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Coherent population trapping as a magnetic-field diagnostic for hydrogen plasmas
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Coherent population trapping (CPT) is theoretically examined as a magnetic-field diagnostic for high-β
hydrogen plasma. Time-dependent quantum mechanical Bloch equations, which describe the evolution of the
2s and 3p level populations of the hydrogen atom under CPT conditions, were solved numerically. When the
frequency difference of two copropagating lasers equals the energy difference between the atoms’ levels subject
to the local magnetic field, a discernable CPT dark line in the Hα emission is predicted, enabling the possibility
of noninvasive, localized magnetic-field measurements. The effects of fine and hyperfine level structure, Doppler
broadening, plasma-generated electric fields, and degree-of-hydrogen ionization are included in the model. A
shift in dark-line position of 15% of the linewidth is predicted to be caused by contributions from the entire
Hα manifold. The laser-induced Hα fluorescence is estimated to be an order of magnitude stronger than the
background Hα emission.
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I. INTRODUCTION

Spatially and temporally resolved magnetic field B mea-
surements have long been considered essential in plasma
physics experiments. Coil or Hall probes inserted into the
plasma are well-developed techniques, but not suitable for
higher-temperature, low collisionality plasmas. Noninvasive
spectroscopic techniques for field measurement, such as
spontaneous emission from Zeeman-split levels, are difficult
to perform at low field strengths and are also compromised by
their line-integral nature. Modern, highly precise laser-induced
fluorescence (LIF) techniques, including the motional Stark
effect (MSE) diagnostic [1], can provide point, line, and sheet
[two-dimensional (2D)] information, but generally only at high
field strengths.

The quantum optics phenomenon of coherent population
trapping (CPT) has been used in various studies, includ-
ing laser cooling of atoms [2], electromagnetically induced
transparency [3], and testing of the Jaynes-Cummings model
of quantum chromodynamics [4]. CPT has recently been
successfully used to make point measurements of magnetic
fields in a neon discharge [5] and a sodium atomic vapor
[6]. By taking advantage of the polarization states of the
emission, magnetic-field direction can also be determined.
Neon, sodium, and similar higher-Z species ionize quickly
out of their lower states, hence, trace quantities would not
be useful for field measurements in hot hydrogen plasmas.
Herein, we will examine if neutral hydrogen, although at
small concentrations in hot plasmas, could be used in CPT
experiments to determine the local B.

In semiclassical atom-field theory, for a single laser, the
most efficient frequency for optical pumping of an electron
from a lower to an upper level occurs when the laser frequency
equals the frequency difference between those two levels or
ωLaser = (Eupper − Elower)/h̄. However, in a � system (Fig. 1),
when two lasers are resonant with the two (greater) transitions,
the optical electron may become “trapped” in a particular
coherent superposition of the lower states and no pumping
to the upper state will occur. For a collection of �-system
atoms, exposure to the two lasers may quickly transition all
electrons into that particular coherent superposition of lower

states, depleting the upper-state population and causing the
fluorescence to vanish. The resulting spectroscopic condition
is known as a “dark state.” This is the essence of the CPT
phenomenon: atomic quantum states can become coupled such
that their populations can not be transferred to other states by
certain resonant fields.

Hydrogen, the simplest element in the Universe with known
and exact analytical solutions for its quantum mechanical wave
functions, nevertheless, has a complex spectroscopy. Its lines
are closely spaced and the effect of hyperfine structure is often
much stronger for atomic hydrogen than for other atoms.
Yet, due to its relevance toward realizing fusion reactors,
quantifying magnetic fields in hydrogen plasma experiments
is critical. As such, the objective of this study is to examine
the CPT phenomenon applied to neutral atomic hydrogen,
including the effects of fine and hyperfine splitting, Doppler
broadening, and ionization fraction, toward evaluating its
possible utility as a magnetic-field diagnostic.

One plasma configuration that would benefit from de-
velopment of a CPT-based magnetic-field diagnostic is the
field-reversed configuration (FRC), as illustrated in Fig. 2.
The FRC has no toroidal magnetic field, and both plasma and
magnetic field exist on its major axis. It has the highest β

(ratio of plasma pressure to magnetic-field energy density) of
any potential fusion device and the simplest geometry, fitting
inside a cylindrical vacuum vessel and employing only external
solenoidal ring magnets. Higher β means higher temperature,
stable plasmas are possible, allowing use of fuels that produce
far fewer neutrons than D-T [7], hence alleviating radiation
problems. Currents flowing in the toroidal direction (dashed
lines), in combination with the external ring magnets, create
the closed field line shape. The magnetic field is zero at the two
X points and along the O-point line (minor magnetic axis).
The field strength required for FRC confinement is less than
for lower-β configurations, such as tokamaks, obviously much
lower near the minor axis, a null. In this paper, we will explore
whether the CPT technique applied to hydrogen is suitable
for measuring the low magnetic field (<0.1 T) of the FRC’s
interior.

In the following, CPT will be formulated for application
to the atomic hydrogen 3p-2s transition states (Hα emission),
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FIG. 1. Schematic of � system. Upper state |0〉 has energy h̄ω0,
and lower states |1〉 and |2〉 h̄ω1 and h̄ω2, respectively, relative to the
atomic ground state. The applied lasers have frequencies ωL1 and
ωL2. The frequency difference between the lasers is ω12.

including considering the effects of fine (electron spin-orbit)
and hyperfine (nuclear spin-orbit) structure, and Doppler
broadening.

II. THEORY

A. Coherent population trapping: The Bloch equations

A combined formalism from Arimondo and Orriols [8],
Orriols [9], and Aspect et al. [10] will be used in deriving
CPT applied to a three-level “Lambda” system shown in
Fig. 1. Quantum state |0〉 is the upper state, while |1〉 and |2〉
are the lower states with energies E0 > E1 ≈ E2 (relative to
the atomic ground state). Lower states |1〉 and |2〉 could be the
Zeeman-split states for the present purposes. Two lasers are
assumed, each producing an electromagnetic field with tunable
frequency.

The quantum mechanical noninteracting Hamiltonian in-
cluding kinetic and internal energies is

H0 = p2

2m
+

∑
j

Ej |j 〉〈j | = p2

2m
+ h̄

∑
j

ωj |j 〉〈j |, (1)

FIG. 2. FRC schematic. FRCs may be spherical, prolate, or oblate.

where the state vectors|j 〉are orthonormal (j = 0,1,2), p is the
atom’s momentum, and m its mass. The coupling Hamiltonian
for electric dipole interaction with an electromagnetic field is

V = − �D · �E(t), (2)

where �D is the electric dipole vector operator and �E is the
classical electric field. The combined electromagnetic field for
two laser beams propagating in the z direction can be written
as

�E(t) = 1
2 �ε1ξ1 exp[i(k1z − ωL1t) + c.c.]

+ 1
2 �ε2ξ2 exp[i(±k2z − ωL2t + �) + c.c.], (3)

where �εj is the polarization vector, ξj is the electric field
strength, kj is the wave number, ωLj is the frequency of laser
j , � is the relative phase of the beams, and c.c. represents
the complex conjugate. The ± symbol designates whether
the beams are copropagating (+) or counterpropagating (−).
For circularly polarized beams, �εj = ∓(ex ± iey)/

√
2 corre-

sponding to σ+ or σ− polarization, respectively, or �εj = ez for
linear π polarization, where ex , ey , and ez are Cartesian unit
vectors of the laboratory reference frame. Assuming the laser
fields connect the lower states to the upper |0〉 state, the Rabi
frequencies �j for each laser beam 1 and 2 can be defined as

�1 = −ξ1

h̄
eiθ1〈0|�ε1 · �D|1〉, (4a)

�2 = −ξ2

h̄
eiθ2〈0|�ε2 · �D|2〉. (4b)

Note that the Rabi frequencies can be complex if circularly
polarized beams are used, and that the beam phase difference
� is incorporated into θ2. Combining Eqs. (3) and (4) into the
interaction Hamiltonian of Eq. (2) and invoking the rotating-
wave approximation [11] gives

V = h̄

2
[|�1|e−i(ωL1t−θ1)|0〉〈1| exp(ik1z)

+ |�2|e−i(ωL2t−θ2)|0〉〈2| exp(±ik2z) + H.c.], (5)

where H.c. is the Hermitian conjugate. Using the relation for
photons of momentum ±h̄k [10]

exp(±ikz) =
∑

p

|p〉〈p ∓ h̄k| (6)

and from hereafter omitting the magnitude symbol for the Rabi
frequencies, the final form for the interaction Hamiltonian is

V = h̄

2

∑
p

[�1e
−i(ωL1t−θ1)|0,p〉〈1,p − h̄k1|

+�2e
−i(ωL2t−θ2)|0,p〉〈2,p ∓ h̄k2| + H.c.]. (7)

The upper state |0,p〉 can only be coupled to ground states
|1,p − h̄k1〉 and |2,p ∓ h̄k2〉 such that the summation in Eq. (7)
reduces to just these coupling terms.

The Heisenberg equations of motion (Bloch equations) for
the state population densities ρjj and coherences ρjk (j �= k)
are derived through the Von Neumann commutation relation

∂ρ

∂t
= 1

ih̄
[H0 + V,ρ]. (8)
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Using Eqs. (1) and (7) in Eq. (8), nine (including complex
conjugates) linear first-order ordinary differential equations
are obtained as

ρ̇00 = i

2
[�1e

+i(ωL1t−θ1)ρ01 + �2e
+i(ωL2t−θ2)ρ02

−�1e
−i(ωL1t−θ1)ρ∗

01 − �2e
−i(ωL2t−θ2)ρ∗

02], (9a)

ρ̇11 = i

2
[�1e

−i(ωL1t−θ1)ρ∗
01 − �1e

+i(ωL1t−θ1)ρ01], (9b)

ρ̇22 = i

2
[�2e

−i(ωL2t−θ2)ρ∗
02 − �2e

+i(ωL2t−θ2)ρ02], (9c)

ρ̇01 = i

2

[
2ρ01

(
−ω01 − pk1

m
+ h̄k2

1

2m

)

+�1e
−i(ωL1t−θ1)(ρ00 − ρ11) − �2e

−i(ωL2t−θ2)ρ∗
12

]
, (9d)

ρ̇02 = i

2

[
2ρ02

(
−ω02 ∓ pk2

m
+ h̄k2

2

2m

)

+�2e
−i(ωL2t−θ2)(ρ00 − ρ22) − �1e

−i(ωL1t−θ1)ρ12

]
, (9e)

ρ̇12 = i

2

[
2ρ12

(
−ω12 + p(k1 ∓ k2)

m
− h̄

(
k2

1 − k2
2

)
2m

)

+�2e
−i(ωL2t−θ2)ρ∗

01 − �1e
+i(ωL1t−θ1)ρ02

]
, (9f)

where ρ∗
kj = ρjk (j �= k), ωjk = ωj − ωk , pk/m is the fre-

quency correction due to nonzero atomic velocities (Doppler
shifting), h̄k2/2m is the atomic recoil frequency shift resulting
from photon absorption, and the upper signs refer to coprop-
agating laser beams and lower sign for counterpropagating.
While the recoil velocity may be important for laser cooling
of atoms, for the photon wavelengths of this study (656 nm),
this term is negligibly small at ≈1 MHz. The atomic velocity
is υ = p/m. Note that numerical values for frequencies will
be quoted in Hz rather than s−1.

Relaxation processes, including collisional effects and
spontaneous emission, should be added to Eqs. (9) [12,13].
In this paper, applicable to low-density hydrogen plasma,
collisions are rare such that these effects in the relaxation
terms are not needed. Denote the spontaneous emission rates
as �0, �1, and �2 for the |0〉, |1〉, and |2〉 states, respectively.
The relaxation rate for decoherence rate between the |1〉 and
|2〉 states, �12, is determined by the transit time 1/�t = rL/υ

of the atom in the electromagnetic laser field, a beam of radius
rL for the present purposes. Note that 1/�t would depend on
collisions if the collision rate were of the same order or greater
than rL/υ. With these relaxation terms included, Eqs. (9) can
be written as

˙̃ρ00 = −�0ρ̃00 + i

2
[�1(ρ̃01 − ρ̃∗

01) + �2(ρ̃02 − ρ̃∗
02)], (10a)

˙̃ρ11 = �0

2
ρ̃00 − �1ρ̃11 + i

2
�1(ρ̃∗

01 − ρ̃01), (10b)

˙̃ρ22 = �0

2
ρ̃00 − �2ρ̃22 + i

2
�2(ρ̃∗

02 − ρ̃02), (10c)

˙̃ρ01 = −�0

2
ρ̃01 + i

[
δL1ρ̃01 + �1

2
(ρ̃00 − ρ̃11) − �2

2
ρ̃∗

12

]
,

(10d)

˙̃ρ02 = −�0

2
ρ̃02 + i

[
δL2ρ̃02 + �2

2
(ρ̃00 − ρ̃22) − �1

2
ρ̃12

]
,

(10e)

˙̃ρ12 = −�12ρ̃12 + i

(
δRρ̃12 + �2

2
ρ̃∗

01 − �1

2
ρ̃02

)
, (10f)

where δL1 = (1 − υ/c)ωL1 − ω01 and δL2 = (1 ∓ υ/c)ωL2 −
ω02 are the laser detuning parameters from resonance between
the |0〉 and |1〉, and |0〉 and |2〉 states, respectively, and δR =
δL2 − δL1 = �ωL − ω12 + υ

c
(ωL1 ∓ ωL2) is the Raman two-

photon detuning parameter. Note that the Doppler effect is
implicit in the Raman detuning parameter through the υ/c
term.

To eliminate the oscillating terms of Eqs. (9), the variable
substitutionsρ̃0j = ρ0j e

i(ωLj t−θj ), ρ̃12 = ρ12e
i(�ωLt−�θ ), ρ̃jj =

ρjj , ρ̃∗
kj = ρ̃jk (j �= k) were used, where �ωL = ωL2 − ωL1

and �θ = θ2 − θ1. The index of refraction N = kc/ω =
1 was assumed since the plasma and electron cyclotron
frequencies are negligibly small compared with ω in the
present experiments (an electron density above ne ∼ 1018 cm−3

and a magnetic field above 100 Tesla are needed for the plasma
frequency and electron cyclotron frequency, respectively, to
affect the refractive index at the planned laser frequencies).

The critical criterion for establishing CPT is δR . When δR

equals zero, the |1〉 and |2〉 states become strongly coupled,
atoms become trapped in a coherent superposition of the lower
states, and pumping to the |0〉 state ceases. Note that the laser
detuning parameters δLj need not equal zero to achieve CPT,
but rather their difference must equal zero, which is equivalent
to δR = 0. Physically, this means that the lasers can be detuned
from pumping the |0〉 state, even rather significantly, but their
frequency difference (including the Doppler-shift correction)
must equal the beat frequency between the two lower |1〉 and
|2〉 states to cause CPT.

For the low hydrogen temperatures considered here (less
than 1 eV), υ/c is ∼10−4 such that the Doppler-shift factor
in δR has a negligible effect for copropagating laser beams
(minus sign in δR) since |ωL1−ωL2| ≈ ω12 ≈ �ωL, resulting
in a less than 1 MHz frequency correction to the detuning
parameter. The Doppler shift will be important for CPT
resonance only for multi-keV temperatures in copropagating
beam experiments. However, the Doppler effect can not be
neglected in counterpropagating beam experiments since the
frequency correction could then be appreciable (ωL1 + ωL2 �
ω12, �ωL). This is the impetus for achieving velocity-selective
CPT resonance in counterpropagating beam experiments since
the lasers can be detuned to exactly match the desired atomic
velocity. In other words, utilizing the Doppler effect as a
velocity diagnostic with CPT is analogous to using the Zeeman
shift herein as a magnetic-field diagnostic.

Therefore, measurements using the CPT effect will be
Doppler-free for copropagating dual laser beams, and atomic
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velocity distributions, whether Maxwellian or otherwise, do
not need to be considered. The velocity terms will be neglected
in δLj and δR , for the present purposes and, correspondingly,
Eqs. (10) do not depend on the atomic velocities.

III. RESULTS

A. Experimental parameters for hydrogen

To study the effects of CPT in a warm hydrogen plasma,
appropriate values for the parameters in Eqs. (10) are needed.
The Rabi frequencies depend on the Hα transition dipole
moment and the laser field amplitude through Eq. (4). The
dipole moment is estimated as |−→D | ≈ a0e, where a0 is the
hydrogen Bohr radius. The laser electric field strength |−→ξ |is
given by

|−→ξ | =
(

2

c

P

πr2
L

)
, (11)

where P is the laser power, and c is the speed of light.
Assuming a laser power of 300 mW and beam radius of 1 mm,
the Rabi frequency will be �R ≈ 700 MHz. The optimal Rabi
frequency to minimize power broadening while maximizing
magnetic-field detectability is given by a critical frequency as
�2

crit = �0�t [14]. Using relevant relaxation parameters (see
below), �crit ∼ 10 MHz, above which no better detectability
is achieved, but line broadening worsens.

In the proposed � system for the hydrogen Hα emis-
sion (Fig. 1), states |0〉, |1〉, and |2〉 represent the |3p1/2;
m′ = +1/2〉 and the metastable |2s1/2; m′′ = ±1/2〉 states,
respectively. (This choice will be discussed in more detail
in the following.) The convention of a single prime for upper
states and double primes for lower states will be followed. The
spontaneous emission rates for these states are 22.45 MHz [15]
for �0 and 8.23 Hz [16] for �1 and �2 in the absence of electric
fields and collisional deexcitation (to be discussed later).

The decoherence rate �12, representing the relaxation of
coherence between the two lower states of the � system, is an
important parameter for CPT, as higher rates lead to weaker
CPT effects [9,13]. As discussed earlier, �12 can be considered
the rate at which atoms leave either of the lower states, and is
the sum of a collisional relaxation rate and a transit relaxation
rate [12,17]. The average H-atom collisional relaxation rate is
�Coll = υT/λmfp ∼ 104 Hz, where υT is the atomic thermal
velocity, T = 0.4 eV, λmfp is the atomic mean-free path, and
p = 1.2 mTorr for the hydrogen plasma of the PFRC-1 [18].
The average transit relaxation rate can be estimated as υT/rL =
6.2 MHz or = 0.28�0. Therefore, the short transit time
dominates, and �12 ≈ υT/rL.

Because the 2s state is metastable, the coronal model [19] is
not appropriate since population losses can be caused by both
radiative emission and electron-impact excitation to higher
levels during the 2s time scale. The rate equations for the n =
2 and 3 states, neglecting n = 4 and greater cascade transitions,
can then be written as

ṅ2s = n1ne〈σ1→2sυe〉 − n2sne〈σ2s→3υe〉 − n2sne〈σ2s→1sυe〉
+ n3/τ3→2s − n2s/τ2s , (12a)

ṅ3 = n1ne〈σ1→3υe〉 + n2sne〈σ2s→3υe〉 − n3/τ3, (12b)

where n1 is the 1s ground state density, n2s is the 2s state
density, and n3 is the combined density of the 3s, 3p, and
3d states (the 2p state does not affect these populations in the
coronal approximation). Similarly, τ3→2s is the relaxation time
from the n= 3 state to the 2s state, τ2s is the metastable lifetime
of the 2s state, and τ3 is the total lifetime of the n = 3 state.
The electron-impact excitation (deexcitation) cross sections
are represented as σi→j (σj →i), and υe is the electron velocity.
Using the excitation cross-section calculation method detailed
by Sobel’man [20], the cross sections required are σ1→2s = 5
× 10−18 cm2 = σ2s→1 (by detailed balancing [20]), σ1→3 = 0.9
× 10−17 cm2, and σ2s→3 = 6 × 10−16 cm2. Since τ2s is large,
this term in (12a) is neglected, and the steady-state populations
can be calculated by setting the time-derivative terms to zero,
resulting in n2s ∼ 1011 cm−3 and n3 ∼ 108 cm−3.

B. Stark effect on 2s level metastability

The linear Stark splitting of H-atom fine-structure levels (j
levels) by a weak (�3000 V/cm) dc electric field is given by
the formula of Bethe and Salpeter [21]:

�EStark
dc = 3

4

√
n2 −

(
j + 1

2

)2
nm

j (j + 1)
ξdc,

(13)
m = −j, − j + 1, . . . , + j.

Note that the electric field ξdc is in atomic units
(1 V/cm = 15 620 a.u. such that �E is in units of cm−1).
The Lamb shift is not included in the above equation, but
should be for j = 1/2 of s states (l = 0). In such a case, the
above equation should be replaced with [14]

�EStark−Lamb
dc = L

2
± 1

2

√
L2 + 4(n2 − 1)(nmξdc)2,

(14)

where the ± corresponds to m = ±1/2. The Lamb shift equals
L = 1.0578 GHz (0.03526 cm−1) for the 2s1/2 state (lying
above the otherwise degenerate 2p1/2 state, in the absence of
external fields) and is 315 MHz (0.0105 cm−1) for the 3s1/2

state.
From numerical calculations of dc Stark effect of the

hydrogen 2s1/2 hyperfine level (F = 0,1) [22], the asso-
ciated frequency shift scales as 1100E2

Stark (Hz cm2/V2).
Accordingly, a 100 V/cm dc field, the maximum expected
in the FRC based on 10Teωpi/c, where ωpi is the ion plasma
frequency, would shift the 2s1/2 hyperfine levels by ∼10 MHz.
Note, however, that the ∼ E2 correlation was taken from
numerical simulations, which may not apply to higher field
strengths than were measured in Ref. [14] (∼mV/cm), or
when magnetic fields are also present since magnetic- and
electric-field effects can not be disentangled. Regardless, a
nominal 10-MHz dc Stark shift is assumed to be a conservative
approximation.

The ac Stark effect in the low-frequency (ωac � ωStark =
DEStark/h̄), low strength limit (αE2

Stark/h̄ � ωac where α is
the electric polarizability) in a one-level atom [23] causes
a frequency shift of ∼ ωStark. The polarizability can be
estimated through α = n6 + 7

4n4(l2 + l + 2) [15], expressed
in atomic units (1.65 × 10−41 s4A2/kg), which for a 2s term
is α2s = 2 × 10−39 s4A2/ kg, resulting in a characteristic ac
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Stark strength frequency of just 7 Hz for a 15-V/cm field. In
fact, electric-field amplitudes on the order of 104 V/cm would
be needed to achieve a critical Stark strength of ∼1 MHz,
such that for the ac frequencies and field amplitudes to be
considered here, we will always be in the weak ac field
regime. As detailed in Ref. [14], the hyperfine ac Stark shift
is ∼10−6 that of the 1s − 2s ac Stark shifting, such that
an overall ac Stark shift of 20 MHz, for a 15-V/cm field
amplitude, for example, is reduced to the ∼Hz level in the
hydrogen hyperfine structure. Therefore, ac Stark shifting will
be considered negligible in the hyperfine structure, but dc Stark
effects could cause a shift of ∼10 MHz in the 2s1/2 hyperfine
levels.

External electric fields will quench the otherwise metastable
2s1/2 state of atomic hydrogen. As noted earlier, the relaxation
rate �2s of the 2s1/2 state in the absence of external field is
8.23 Hz [16], while the relaxation rate �2p for the 2p states
are 3.94 GHz [24]. An applied electric increases the 2s1/2

decay rate according to Lamb and Retherford’s formula [25]

�Stark = �2p

|〈2s1/2|e �E · �r|2p〉|2
h̄2

(
ω2 + �2

2p/4
) , (15)

where e �E · �r is the electric dipole moment between the 2s1/2

and 2p states, and ω is the frequency difference between the
states. For large fields, �Stark asymptotes to �2p/2, consistent
with the results of Rojansky and Van Vleck [26]. Metastability
quenching thus scales quadratically with moderate electric
field strength, as is observed experimentally. For the 2s1/2-2p

states, the frequency difference is 10 GHz. Assuming a radius
of 2 × 10−8 cm for the electric dipole length scale for the
n = 2 states, the quenched 2s1/2 decay rate is given by
�Stark ∼ 150E2 (Hz), where E is in units of V/cm. Thus, a
100-V/cm dc electric field causes an enhanced 2s1/2 decay
rate of ∼1.5 MHz, faster than the wall collision frequency of
105 Hz. Such quenching greatly increases the 2s1/2 decay rate,
but not nearly to the level of the 2p decay rate (627 MHz).
Therefore, for a 100-V/cm field, the 2s1/2 state can still be
considered largely metastable relative to the 2p states, even
considering deactivation through wall collisions. Note that
field strengths on the order of thousands V/cm are needed
to approach the asymptotic regime where �Stark ∼ �2p/2.
This level of field would cause Stark shifts of the energy
levels to become within range of the electron spin-orbit fine
splitting, such that considering electric-field effects as a small
perturbation becomes no longer valid.

Therefore, for larger fields, of the order 3000 V/cm
and greater, the 2s1/2 state is fully quenched, losing all its
metastability characteristics, and total angular momentum
quantum number J (or equivalently F if considering hyperfine
structure) is no longer a good quantum number, in addition
to electron orbital angular momentum L not being good
for all nonvanishing field strengths. Such high electric fields
are not expected for the current generation of FRC plasma
experiments, and will not be considered below.

C. Hα emission spectrum

In the absence of an applied magnetic field, the Hα spectrum
has a center wavelength of 656 nm (4.57 × 1014 Hz), consisting

TABLE I. Fine and hyperfine splitting of Hα terms. The applied
magnetic field which would cause the same splitting is also shown as
Bcrit [see (18)].

Fine splitting

State �ν (MHz) �E (10−8 eV) Bcrit (Gauss)

3d 1086 449.7 776
3p 3252 1347 2323
2p 10997 4546 7843

Hyperfine splitting

3d5/2 2.71 1.13 2
3p3/2 7.03 2.91 5
3d3/2 4.22 1.75 3
3s1/2 52.77 21.86 38
3p1/2 17.59 7.29 13
2p3/2 23.74 9.83 17
2s1/2 178.1 73.74 127
2p1/2 59.39 24.58 42

of seven degenerate fine-electronic transitions. However, an
external magnetic field will cause Zeeman splitting for each of
the terms, resulting in 48 individual fine-electronic transitions.
Fine splitting and hyperfine splitting of the terms involved
in the Hα emission are shown in Table I. For low-magnetic-
field diagnostics (∼20 G), one must also account for hyperfine
transitions, which would result in 136 individual electronic
transitions.

The 3p1/2 → 2s1/2 transitions were chosen for the best
effectiveness in observing CPT due to the metastable |2s〉 state.
The 3p1/2 → s1/2 transitions are preferred to the 3p3/2 →
2s1/2 transitions because the m′ = 1/2 → m′′ = 1/2 transi-
tions consist of just four Zeeman-split transitions, whereas the
m′ = 3/2 → m′′ = 1/2 transitions consist of six Zeeman-split
transitions. Therefore, CPT will have a more significant effect
on reducing fluorescence using the 3p1/2 → 2s1/2 transitions
than the 3p3/2 → 2s1/2 transitions. The remaining five fine
transitions of the manifold decay to the nonmetastable 2p state,
with a spontaneous decay rate of 627 MHz [24]. In comparison
with the 8.23-Hz decay rate (105 Hz including wall collisions)
of the 2s states, the � systems using Zeeman-split 2p states
as lower states are therefore not favorable for observing CPT
effects.

Define ω01 as the frequency of the transition between the
|3p1/2;m′ = +1/2〉 and |2s1/2;m′′ = +1/2〉 states, and ω02

as the frequency of the transition between the |3p1/2;m′ =
+1/2〉 and |2s1/2;m′′ = −1/2〉 states. If two lasers are tuned
to frequencies ωL1 = ω01 and ωL2 = ω02, then the Raman
detuning parameter δR will be zero, the atoms will become
trapped in the two lower states, and the radiative intensities of
two of the four lines of the 3p1/2 → 2s1/2 transition will be
sharply reduced. If instead, ωL2 is fixed at ω02 (δL2 = 0) and
ωL1 is scanned around ω01 (as in Fig. 3), then the observed
light intensity will increase, and then drop to a minimum
when ωL1 = ω01. When the observed light intensity is at a
minimum, one can then determine the magnetic-field strength
using the difference in lower-state frequencies (ω12 = �ωk)
from Zeeman splitting �ω = gμBB/h̄.
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FIG. 3. Numerical solution of Eqs. (10) for ρ00 using (a) the
idealized parameters of Orriols [9] and (b) Hα parameters for
the |3p1/2; m′ = +1/2〉 → |2s1/2; m′′ = ±1/2〉 target transition.
The FWHM of the dark line dip at δR = 0 is ∼ 48�0, and �I = 0.43
for (b).

The relative intensities of electronic transitions without line
broadening are given by

I (n′j ′m′|n′′j ′′m′′) ∼ ρ00(n′j ′m′)S(j ′m′|j ′′m′′)
×A(n′j ′m′|n′′j ′′m′′)hνn′j ′m′→n′′j ′′m′′ ,

(16)

where I (n′j ′m′|n′′j ′′m′′) is the line intensity (erg/cm3s) from
upper principal level n′ with electron angular momentum
quantum number j ′and projection m′ to lower state n′′j ′′m′′,
ρ00(n′j ′m′) is the density of the excited state as calculated with
Eqs. (10), A is the Einstein spontaneous decay rate, and hν is
the energy difference between the excited and lower states.
S is the square of the Clebsch-Gordan coeffcient (Wigner 3j

symbol) for electron orbital angular momentum transitions
including Zeeman splitting [20].

The above hydrogen-relevant experimental parameters
were used to solve Eqs. (10) for ρ00 in steady state for the
isolated |3p1/2;m′ =+1/2〉→ |2s1/2;m′′ =±1/2〉� system, as
shown in Fig. 3(b) [Fig. 3(a) shows an idealized CPT spectrum
of Orriols [9]. The full width at half maximum (FWHM) of the
dark line and the peak-to-valley per cent reduction in intensity
�I = (Imax − Imin)/Imax, are metrics of the effectiveness
of CPT. For the calculated CPT spectrum for hydrogen

plasma, the FWHM of the dark line is ∼ 48�0 (1.08 GHz),
and the peak-to-valley reduction in intensity is �I =
0.43. This idealized estimate shows that the CPT technique
should work, in principle, as a magnetic-field diagnostic, but
further refinements for actual conditions are needed.

Note that ρ00
(
n′j ′m′) refers to the number density of

excited neutral hydrogen atoms. In the PFRC-1, a balance
between volumetric ionization and radiative recombination
would cause the ratio of neutral hydrogen to electron densities
RH to be in the range RH = 10−6–10−7, assuming Ti =
0.4 eV and Te = 100–1000 eV. But, surface losses of ions to
material structures in the PFRC-1 results in intense recycling,
raising the measured value of RH to ∼1. Later PFRC devices
are expected to have far less recycling, hence lower RH. If
necessary, RH could be increased by local gas puffing or neutral
beam injection. Calculations with the DEGAS code [27] show
that modest gas puffing could increase RH to a steady-state
value of 10−2 on axis and to 1 at the plasma separatrix.

D. Line broadening

For PFRC-1 parameters, Doppler broadening dominates
over other line-broadening mechanisms. Assuming the atoms
have a Maxwellian velocity distribution of width σD =
ν0υT/c, the Doppler-broadened intensity profile is [19]

ID (ν) = I (n′j ′m′|n′′j ′′m′′)fD(ν − ν0), (17a)

where

fD(ν − ν0) = 1

σD

√
2π

e−(ν−ν0)2/2σ 2
D . (17b)

Here, ν0 denotes the line frequency νn′j ′m′→n′′j ′′m′′ of
Eq. (16). Doppler broadening completely blurs all the 48
fine and Zeeman-split electronic transitions if observed with a
spectrometer, including the 3p1/2 → 2s1/2 transitions (Fig. 4),
as the FWHM of the Doppler broadening profiles at T = 0.4 eV
is

√
8ln2σD ≈ 22 GHz. The frequency spacing between each
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FIG. 4. (Color online) Strength and frequency (relative to target
laser frequency of 457 THz) of 48 fine electronic transitions of Hα

emission. Dashed blue line illustrates Doppler broadening centered
at the 457-THz target frequency for a 0.4-eV hydrogen temperature
(FWHM 22.2 GHz).
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of the individual Zeeman-split 3p1/2 → 2s1/2 transitions is
∼100 MHz, two orders of magnitude less than the FWHM
of Doppler broadening. Therefore, individual Zeeman-split
transitions can not be resolved with a single-laser method but
can be with the two-laser CPT approach we describe. All
transitions of the Hα manifold must be considered.

E. CPT applied to the Hα manifold

Figure 3 illustrated the effects of CPT with relevant param-
eters for the � system constructed with the two |3p1/2;m′ =
+1/2〉 →|2s1/2;m′′ = ±1/2〉 transitions, without including
other n = 3 → 2 transitions. However, all transitions of the
Hα manifold will be excited.

The observed fluorescence of the entire Hα manifold,
including CPT effects, is

IHα
(ν) ∼

∑
j ′,m′

∑
j ′′,m′′

I (3j ′m′|2j ′′m′′), (18)

where appropriate dipole selection rules between j ′m′→ j ′′m′′
are followed. Implicit in Eq. (18) is the upper-state density
ρ00(n′ = 3,j ′m′) of Eq. (16), where ρ00 depends on the off
resonance from the applied laser frequencies through δL1 and
δL2.

We will assume that one of the two propagating laser
frequencies ωL2 is again set fixed to the |3p1/2;m = +1/2〉
→|2s1/2;m = −1/2〉 target transition, i.e., δL2 = ωL2 − ω02 =
0. The remaining laser frequency ωL1 will be allowed
to vary throughout the bandwidth of the Doppler profile,
thereby differentially pumping the upper-state populations
of the various Hα terms, as well as causing some CPT
resonance for nontarget transitions. All electronic transitions
are approximated as � systems to account for partial CPT
resonance of nontarget transitions. This assumption is not
unreasonable since in 42 out of the 48 electronic transitions,
the |n = 3〉 state decays to two |n = 2〉 states, making �

systems. Each � system experiences different values for the
laser detuning parameters δL1 and δL2. The relative values of
δL1 and δL2 for nontarget fine transitions when both lasers are
tuned for the |3p1/2;m = +1/2〉 →|2s1/2;m = ±1/2〉 target �

system are shown in Table II. Resulting upper-state densities
for two sample nontarget transitions are shown in Fig. 5, with
δL2 is set to zero for the |3p1/2;m =+1/2〉→|2s1/2;m =−1/2〉
target transition, and δL1 is allowed to vary.

TABLE II. Normalized effective laser detuning frequencies δL1

and δL2 for the eight fine-transition � systems when the two lasers
are tuned for the target � system |3p1/2; m′ = +1/2 〉→ |2s1/2; m′′ =
±1/2〉. Frequencies are normalized by �0 = 22.5 MHz.

� system δL1 δL2

|3p1/2; m′ = +1/2 〉 → |2s1/2; m′′ = ±1/2〉 (target) 0 0
|3p1/2; m′ = -1/2 〉 → |2s1/2; m′′ = ±1/2〉 −2 +10
|3p3/2 〉 → |2s1/2〉 −149 −137
|3s1/2 〉 → |2p1/2〉 −65 −53
|3s1/2 〉 → |2p3/2〉 +424 +436
|3d3/2 〉 → |2p3/2〉 +293 +306
|3d5/2 〉 → |2p3/2〉 +245 +258
|3d3/2 〉 → |2p1/2〉 −196 −183

FIG. 5. (Color online) CPT spectra of all seven fine-electronic
transition � systems when the lasers are tuned for the target |3p1/2;
m′ = +1/2〉 → |2s1/2; m′′ = ±1/2〉 transitions. The CPT spectrum
for the target transition |3p1/2; m′ = +1/2〉 → |2s1/2; m′′ = +1/2〉 is
reproduced from Fig. 3 as the solid (black) line, and the |3p1/2; m′ =
+1/2〉 → |2s1/2; m′′ = −1/2〉 transition is shown as a dotted (red) line
closely following the solid line. The |3d5/2〉 → |2p3/2〉 transition is of
low density and represented as the (blue) dashed line at the bottom
of the graph (not labeled to avoid clutter).

To simplify the calculations, Zeeman splitting was ignored
for the nontarget fine-electronic transitions since Zeeman split-
ting is small (∼0.1 GHz) compared to frequency differences of
electronic fine transitions (>1.4 GHz). With this assumption,
the approximate Hα spectrum would consist of 4 3p1/2 →
2s1/2 Zeeman-split electronic transitions, 6 degenerate 3d3/2

→ 2p1/2 transitions, 6 degenerate 3p3/2 → 2s1/2 transitions, 4
degenerate 3s1/2 → 2p1/2 transitions, 12 degenerate 3d5/2 →
2p3/2 transitions, 10 degenerate 3d3/2 → 2p3/2 transitions, and
6 degenerate 3s1/2 → 2p3/2 transitions (48 total transitions).

FIG. 6. (Color online) CPT numerical solution of upper state n =
3 density including all seven fine-electronic transitions (red, dashed
line), and including just the fine-electronic transitions with metastable
2s ground states (black, solid line). The dark line FWHM is 48�0,
but the frequency location of the dark line center is at δL1 = −6�0.
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Figure 6 shows the total fluorescence curve using Eq. (18),
summing the curves of Fig. 5, versus laser tuning parameter
δL1. In Fig. 6, the lower curve (red, dashed line) accounts
for the effects of all seven fine electronic transitions in the
Hα manifold. The FWHM of the total fluorescence curve is
∼48�0, similar to the FWHM of the fluorescence curve in
Fig. 3, but �I decreases to 14%, compared to 43%. A
notable feature is that the minimum value of the fluorescence
is shifted away from δL1 = 0. The local minimum value
for the fluorescence intensity in Fig. 6 occurs at δL1 =
−6�0 (−135 MHz) due to the addition of all the nontarget
laser-pumped upper-state densities.

Another reasonable assumption is to ignore the effects of
the |n = 3 〉 → |2p〉 transitions on the fluorescence curves since
the decay from the |2p〉 states (∼1 ns) is rapid compared to the
long-lived |2s〉 metastable states. The |2p〉 states will therefore
have lower densities than the |2s〉 states. Ignoring the effects
of the |n = 3〉 → |2p〉 transitions on the fluorescence curves
results in slightly stronger CPT effects as illustrated by the
upper (black, solid) curve in Fig. 6, which only includes the
|n = 3〉 → |2s〉 transitions. The FWHM of this curve remains
at ∼ 48�0, but �I improves to 40%, closer to the value of
�I in the idealized fluorescence curve in Fig. 3 (�I = 43%).
Nevertheless, even assuming equal contributions from the |2p〉
and |2s〉 states, CPT effects still result in a discernible “dark
line” in the fluorescence spectrum.

F. Measuring the magnetic-field strength

The magnetic-field strength can be measured using the
changes in the fluorescence intensity due to CPT effects. The
dark line in the fluorescence spectrum occurs when the Raman
detuning parameter δR equals zero. Since δR = δL2 − δL1 =
�ωL − ω12, the laser frequency difference when δR = 0 is
equal to the Zeeman splitting such that the magnetic field
strength can be calculated through

B = h̄�ωL

gμB

, (19)

where g is the dimensionless magnetic moment and μB is
the Bohr magneton. Equation (19) is accurate when B �
�EHF/μB , where �EHF is the hyperfine-splitting energy (see
Table I). For low-strength magnetic fields (∼20 G), the present
CPT analysis has to be modified to include the effects of
hyperfine splitting.

However, if the dark line is shifted from δR = 0 due to
the effect of multiple � systems being simultaneously excited
due to Doppler broadening (as in Fig. 6), then measuring the
magnetic-field strength is more difficult. For example, in Fig. 6,
the local minimum in fluorescence is shifted, and is observed
when δR = 6�0 ≈ 135 MHz. This shift is roughly the same
order as the Zeeman splitting between the |2s1/2;m = ±1/2〉
states, which is ≈280 MHz. Such predicted frequency shifts
must be taken into account when performing measurements.

It is of particular importance to note that no Hα CPT dark
line will be observable with a spectrometer due to Doppler
broadening of the fluorescence blurring the resonance. How-
ever, the transmitted spectrally integrated intensity through a
band-pass filter centered on the Hα transition would show a
dip at resonance per Fig. 6.

IV. DISCUSSION

Using the above theoretical estimates, a practical CPT
experiment can be devised, as shown in Fig. 7 applied to the
PFRC-1. A tunable laser beam is split with half the beam
energy entering an Acousto-optical modulator (AOM). The
frequency-shifted output from the AOM is then combined with
the other half of the split beam. This combined, bichromatic
beam is collimated and enters a fiber-optic coupler (FOC) to be
routed through a polarization maintaining fiber to the PFRC-1
device. CCD cameras with a band-pass filter centered at the
Hα emission of 656-nm frequency and ∼20 GHz wide, are
positioned to obtain fluorescence images resulting from laser
illumination of the plasma column.

The frequency shift �ωL can be incrementally changed
through adjusting the tunable laser frequency and the AOM to
span the magnetic-field range of interest. The CCD arrays are
oriented to view the desired cross section, and are triggered to
coincide with each �ω. Because CPT affects only those atoms
in resonance with the applied �ω, most of the pixels of the 2D
image will record the background Hα emission caused by the
Te ∼ 150 eV (appropriate for the PFRC-1) electron impact, but
those pixels corresponding to regions of resonance with �ω

will register relatively lower total intensity due to the integrated
dips in the fluorescence spectrum. Thus, by inverting these
CCD images, the bright portions of each image will represent
the magnetic-field strength as given byB = h̄�ωL/gμB .

The procedure for making magnetic strength measurements
is illustrated in Fig. 8. Computer simulation results for a 25-
cm-radius FRC plasma is shown in Fig. 8(a), showing 100-G
isocontour lines in the r-z plane. Assume for this example
that the AOM has been set for a frequency shift corresponding
to this 100-G magnetic strength. According to CPT theory
described above, there would be ∼40% less fluorescence
emitted from the regions of the plasma illuminated by the
laser sheet having magnetic strengths corresponding to this
frequency shift. As such, dark lines would be seen, as has

FIG. 7. (Color online) Experimental setup for magnetic-field
measurements using CPT showing laser system, polarizing beam
splitter (PBS), acousto-optical modulator (AOM), fiber-optic coupler
(FOC), and polarizations.
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FIG. 8. (Color online) (a) Illustration of 2D magnetic strength
isocontours from a computer simulation of a 25-cm-radius spherical
FRC. The X-point null is at z = 25 cm and r = 0. The O-point null is
at z = 0 and r = 17.7 cm. (b) A 2D image showing the “dark lines”
resulting from CPT tuned to 100-G field identified.

been illustrated in Fig. 8(b). These dark lines give a direct 2D
measurement of geometry of the magnetic strengths having the
prescribed value selected through the AOM. The background
color of Fig. 8(b) is meant to represent the fluorescence
recorded from the rest of the laser-sheet cross section, which
is relatively intense since there is no population trapping
for the regions not at the CPT resonance. Images such as
Fig. 8(b) can be captured at a time scale set by the upper-state
relaxation time, which is ∼0.05 ms. The Alfvén time for the
hydrogen plasma is of order 1 ms, such that sequential images
similar to Fig. 8(b) would show near-real-time evolution of the
magnetic-field topology.

As discussed earlier, the minimum Rabi frequency needed
to achieve CPT is given by a critical frequency �2

crit = �0�t∼
10 MHz for the PFRC-1 experiment. For a laser power
of 300 mW and a 2-mm-diameter beam cross section, the
laser intensity is ∼10 W/cm2, giving a laser excitation Rabi
frequency of � ∼ 700 MHz. The proposed experiments are
therefore well above the threshold criterion for establishing
CPT, and the laser power could be lowered if desired. However,
lower laser power would also reduce the photons available at
the detector, which will now be discussed.

For resonant scattering, where radiation is absorbed at the
resonant frequency ω0 of the transition of interest and then
reemitted as fluorescence at the same frequency, the photon
intensity is given by [28]

ID = η
�

4π

gu

gl + gu

χ

χ + 1
V

nl

τ
, (20)

where ID is the photon count rate collected by the detector, η

is the detector efficiency, � is the solid angle of the emission
(not to be confused with the Rabi frequency �j ), gu and gl are
the upper- and lower-state degeneracies, respectively, V is the
measurement volume, nl is the absorbing state density, and τ

is the radiative lifetime of the upper state (i.e., τ = τ3). The
saturation parameter χ is given by

χ = I (ω0)
gl + gu

gl

πc2

2h̄ω3
0

L (ω0) , (21)

where I (ω0) is the incident laser intensity (W/cm2) and L(ω0)
is the spectral line broadening at ω0. The resonant absorption
cross section σres = h̄ωBEL(ω)/c (here, BE is the Einstein
absorption coefficient) is included within χ . Note that when
the incident radiant intensity is weak, such that χ is small,
the detected intensity increases linearly with incident radiant
intensity, but when χ is large, ID saturates such that no further
signal can be detected no matter how much more radiant
intensity is applied.

Since the Doppler width will be much larger than the natural
linewidth for the atomic hydrogen temperatures considered
here (∼0.4 eV), the line-shape function is Gaussian, and
therefore at resonance the value of L(ω0) is the Doppler width,
which corresponds to 45 ps for 656 nm radiation and a H
temperature of 0.4 eV. For the Hα transition (n = 3 → 2), the
degeneracy of the upper state is 36 and 16 for the lower state,
giving a saturation parameter of χ = 0.083I (ω0). For a laser
intensity I (ω0) ∼ 10 W/cm2, χ ∼0.83, which is the linear
regime, resulting in ID = 0.3η(�/4π )V nl/τ3.

For single-frequency-laser-beam fluorescence, the absorb-
ing state density nl will be a fraction of the full n2s density
since only those Doppler-shifted atoms in resonance with one
of the 136 allowed hyperfine transitions can take part in the
excitation process. With a 10-MHz laser linewidth, this means
that ∼1.4 GHz of the 22-GHz Doppler-broadened profile (see
Fig. 4) is in resonance such that nl ∼ n2s/20.

Using the previously calculated density of the hydrogen 2s

level of ∼1011 cm−3 and lifetime of the n = 3 level (τ3 =
5.6 ns), and assuming a 16-mm, f /1.4 lens in front of a η =
50% CCD with 20-μm pixels at a standoff distance of ∼20 cm
(2.6 × 10−3 ster), the photon rate collected by each pixel
viewing the beam is ∼1010 photons/s from resonant scattering
of a 10-W/cm2, 656-nm laser beam through a plasma
consisting of 1012 cm−3 of electrons at 150 eV, and hydrogen
atoms at a density of 1012 cm−3. Over an Alfvén time of ∼1 μs,
therefore, ∼104 photons/pixel viewing the illuminated volume
will recorded by the CCD. Assuming photon counting obeys
Poisson statistics, the signal to noise recorded per pixel is
S/N ∼ 100. Therefore, sufficient signal should be received
by the detector to rise above the noise during an Alfvén time.
Also, pixels could be binned to achieve greater S/N, which
would also be advantageous to allow higher speed imaging
of the CCD, but would degrade the imaging resolution. For
example, 10 × 10 binning of pixels would increase the detected
photon counts by a factor of 100, thereby increasing the S/N
to ∼1,000, while only degrading the image resolution down to
∼2 mm, which is certainly tolerable for the present purposes.
The background Hα emission intensity is Iback = η �

4π
V n3

τ3
∼

109 photons/s. Thus, the resonant fluorescence signal should
be an order of magnitude stronger than the background Hα

emission.
We have shown that applying CPT as a magnetic-field

diagnostic is feasible theoretically, using practical parameters
for a FRC magnetic fusion device. Fine and hyperfine levels
of the Hα transition manifold have been considered in the
analysis, and their excitation due to finite Doppler width. Stark
effects, both dc and ac, will be negligible effects for the plasma
parameters of FRC devices, but could become important for dc
electric fields much larger than 1000 V/cm. The Zeeman effect
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will cause overlap of fine transition lines of the Hα manifold
beginning at field strengths of ∼350 G, which will complicate
the spectral structure of the Hα fluorescence. However, this
does not necessarily mean that CPT can only be applied to low-
strength magnetic fields, but further refinement of the present
analysis may be needed. For fields lower than about 20 G, hy-
perfine transitions should be included in the analysis for a more

precise estimation of CPT effects, but this should be a second-
order effect of the fine transition analysis presented here.
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Hänsch, Phys. Rev. Letts. 92, 033003 (2004).

[23] N. B. Delone and V. P. Krainov, Uspekhi Fizicheskikh Nauk
169, 772 (1999).

[24] L. C. Green, P. P. Rush, and C. D. Chandler, Astrophys. J. Suppl.
Ser. 3, 37 (1957).

[25] W. E. Lamb and R. C. Retherford, Phys. Rev. 79, 549 (1950).
[26] V. Rojansky and J. H. Van Vleck, Phys. Rev. 32, 327 (1928);

V. Rojansky, ibid. 33, 1 (1929).
[27] D. Stotler and C. Karney, Contrib. Plasma Phys. 34, 392 (1994);

Michael Oake (private communication).
[28] K. Muraoka and M. Maeda, Laser-Aided Diagnostics of Plasma

and Gases (IOP Publishing, Bristol, 2001), Chap. 2.

033412-10

http://dx.doi.org/10.1063/1.1149316
http://dx.doi.org/10.1103/PhysRevA.53.2616
http://dx.doi.org/10.1103/PhysRevA.53.2616
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1103/PhysRevE.69.036409
http://dx.doi.org/10.1364/OL.28.001153
http://dx.doi.org/10.1364/OL.28.001153
http://dx.doi.org/10.1007/BF02746514
http://dx.doi.org/10.1007/BF02746514
http://dx.doi.org/10.1364/JOSAB.6.002112
http://dx.doi.org/10.1103/PhysRevA.54.2216
http://dx.doi.org/10.1103/PhysRevA.49.1973
http://physics.nist.gov/asd3
http://dx.doi.org/10.1103/PhysRev.113.179
http://dx.doi.org/10.1103/PhysRevA.58.4717
http://dx.doi.org/10.1103/PhysRevA.58.4717
http://dx.doi.org/10.1016/j.jqsrt.2010.10.015
http://dx.doi.org/10.1016/j.jqsrt.2010.10.015
http://dx.doi.org/10.1103/PhysRevLett.92.033003
http://dx.doi.org/10.1086/190031
http://dx.doi.org/10.1086/190031
http://dx.doi.org/10.1103/PhysRev.79.549
http://dx.doi.org/10.1103/PhysRev.33.1
http://dx.doi.org/10.1002/ctpp.2150340246

