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Regular and stochastic orbits of ions in a highly prolate
field-reversed configuration
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Ion dynamics in a field-reversed configuration are explored for a highly elongated device, with
emphasis placed on ions having positive canonical angular momentum. Due to angular invariance,
the equations of motion are that of a two degree-of-freedom system with spatial variablesr andz.
As a result of separation of time scales of motion caused by large elongation, there is a conserved
adiabatic invariant,Jr , which breaks down during the crossing of the phase-space separatrix. For
integrable motion, which conservesJr , an approximate one-dimensional effective potential was
obtained by averaging over the fast radial motion. This averaged potential has the shape of either a
double or single symmetric well centered aboutz50. The condition for the approach to the
separatrix and therefore the breakdown of the adiabatic invariance ofJr is derived and studied under
variation of Jr and conserved angular momentum,pf . Since repeated violation ofJr results in
chaotic motion, this condition can be used to predict whether an ion~or distribution of ions! with
given initial conditions will undergo chaotic motion. ©2004 American Institute of Physics.
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I. INTRODUCTION

Field-reversed configurations~FRCs! occur in plasmas
of astrophysical, planetary,1 and laboratory scales. In a
these cases, conditions may exist where the particles are
lisionless and their Larmor orbits of size comparable to
spatial scale of the magnetic field. Finite-Larmor-rad
~FLR! conditions are particularly important to the FRC as
fusion reactor,2 our primary interest. This paper elucidat
the phase-space structure of particle motion in an axis
metric prolate FRC and derives the boundary between re
lar and stochastic behavior for trapped-particle orbits. Und
standing stochastic behavior of particle orbits in the FR
essential to issues of macroscopic stability,3 confinement,
and heating, is necessary to explain experimental obse
tions of laboratory FRCs,4–7 such as those which show st
bility for times much longer than predicted by magnetoh
drodynamic~MHD! theory.8

Particle orbits in FRC and FRC-like geometries ha
been previously studied. The phase-space structure in tz
50 subspace is investigated by Wang and Miley~WM!.9

Throughout this paper we use a cylindrical coordinate s
tem (r ,z,f), with r the radius of the device, andz the dis-
tance along the axis from the midplane atz50. Motion in
this subspace is integrable, hence the WM study did not
cidate conditions for stochastic behavior or stability to p
turbation out of the subspace. Finn,10 Lovelace, Larrabee
and Fleischmann~LLF!,3 and Finn and Sudan~FS!11 treat
orbit stochasticity in toroidal FRCs by using perturbati
techniques in situations where resonances occur betwee

a!Electronic mail: landsman@princeton.edu
9471070-664X/2004/11(3)/947/11/$22.00

Downloaded 22 Feb 2004 to 198.35.5.64. Redistribution subject to AIP l
ol-
e
s

-
u-
r-
,

a-

-

-

u-
-

the

r andz degrees-of-freedom. The LLF work considers obla
devices and axis-encircling orbits only. Rather than restr
ing attention to individual resonances and/or large gyrorad
orbits, the present paper aims to find a more general co
tion on chaotic motion by considering the slowing-down
orbital radial frequency,v r , which is shown to occur for a
class of trapped particles. Boundaries between regular
chaotic motion and the structure of phase space have b
explored in depth by Kim and Cary~KC!12 for a linear FRC
geometry. This linear geometry possesses an additional s
metry that allows ‘‘scaling away’’ the conserved canonic
momentum in the linear direction, reducing the number
free parameters to one, ellipticity. The present paper stu
ion orbits in an elongated Hill’s vortex FRC where the to
oidal geometry introduces an additional parameterpf , quali-
tatively changing the ion dynamics in the device. Also, t
elongated Hill’s vortex is an elliptic geometry which allow
exploration of the effects on orbit stability of axial field cu
vature, expected to provide more macroscopic stability th
the racetrack geometry.13 The boundary for chaotic behavio
in an elongated Hill’s vortex is obtained computationally
Hayakawa, Takahashi, and Kondoh~HTK!14 for several val-
ues of energy. An approximate analytic criteria for stoch
ticity applicable for many cases of interest was obtained
ions passing through the midplane by Belova, Davidson,
and Yamada~BDJY!.13 After deriving the averaged shape o
the potential, the present paper proceeds to obtain a gen
analytic expression for the transition to chaotic motion th
can be applied to any set of initial conditions or distributi
functions.

A Newtonian formulation is applied to charged particl
in an elongated Hill’s vortex FRC by Hugrass and Turley15
© 2004 American Institute of Physics
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and used to study a limited range of regular orbits for
axisymmetric situation. Phase-space structure is not stud
The present paper uses a Hamiltonian approach, ana
techniques from nonlinear dynamics, and more extens
single-particle numerical simulations to find the shape of
averaged potential and find a criteria for the existence o
adiabatic invariant for those orbits which do not cross
phase-space separatrix. It should not to be confused with
Hill’s vortex magnetic-field separatrix,Sm , which separates
open from closed field lines in configuration space.

Our numerical simulations16,17 use Hamilton’s equations
and follow the full three-dimensional motion of a single io
Unlike that earlier work, this paper does not treat rotat
magnetic fields, leaving the system axisymmetric and tim
independent. An ion moving in such fields possesses
exact invariants: energyE and canonical angular momentu
pf . Due to a second invariant, the Hamiltonian can be
duced to four canonical variables,r, pr , z, andpz , and the
motion can be viewed as that of a particle moving in a tw
dimensional potential well,Veff(r,z). Since this is a two-
dimensional system, the motion is generally nonintegra
except in cases where there is a third, perhaps adiab
invariant. A particle in a highly-elongated FRC possess
additional invariant which arises when its frequency of m
tion alongr is much higher than alongz, leading to an adia-
batic invariant, the radial actionJr[r prdr/2p, for that
class of orbits. Breakdown of this invariance occurs at
crossing of the phase-space separatrix18,19 that bounds cyclo-
tron orbits from figure-8 orbits, and which in the paper w
be referred to simply as the separatrix.

Section II presents the equations of motion, a sim
physical picture explaining orbit stability, and, followin
WM, reviews types of orbits in the FRC midplane. Ne
types of axis-encircling orbit are classified. Section III d
cusses the stability of all orbit classes to small axial dispa
ments. By averaging over the fast motion inr, an approxi-
mate averaged one-dimensional potential is derived
regular motion. The shape of this averaged one dimensi
potential is either a double or single potential well cente
about z50 and depends on energy along ther degree-of-
freedom,Hr , and an exact invariant,pf . The averaged one
dimensional potential gives a qualitative picture of ion d
namics and clarifies the trapping of particles in one of
two potential wells alongz. Section IV uses the shape of th
averaged potential to derive a general criterion for the e
tence of an adiabatic invariant, which leads to regular orb
Though all the results herein could apply equally well
electrons, their orbits in most FRCs are predominantly of
small-gyroradius type which we treat only in passing. S
tion V summarizes our conclusions and discusses the r
tionship between our criterion and that of BDJY.13

II. TYPES OF MIDPLANE PARTICLE ORBITS

In this section we present the basic equations for
FRC field and Hamilton’s equations for the particle motio
introduce appropriate dimensionless variables, and descr
classification of orbits in the FRC midplane.
Downloaded 22 Feb 2004 to 198.35.5.64. Redistribution subject to AIP l
e
d.
tic
e
e
n

e
he

g
-
o

-

-

e,
ic,
n
-

e

e

-
e-

r
al
d

-
e

s-
s.

e
-

la-

e
,
e a

For this study we use an analytic FRC equilibrium~elon-
gated Hill’s vortex or Solov’ev equilibrium20! described in
cylindrical coordinates (r ,z,f) by a flux function

c~r ,z!5rAf5c0S r 2

r s
2D S 12

r 2

r s
2
2

z2

zs
2D , ~1!

with the magnetic field given byB5“3A5“c3“f, the
constantc05B0r s

2/2, andB0 the magnetic field strength a
r 5z50. There is an elliptic separatrix,Sm , with radiusr s

and half-lengthzs , x-points atr 50, z56zs , and an o-point
at r 5r s /A2. c is positive insideSm and negative outside
Much of our work is based on the assumption of a high
prolate~or large elongation! FRC, where

e[
r s

zs
!1. ~2!

The Hamiltonian for a single ion of massm and chargeq
is given in CGS units by

H~r ,pr ,z,pz ,pf!5
1

2m F pr
21pz

21
1

r 2 S pf2
q

c
c D 2G ,

~3!

with canonical momenta,pi , satisfying Hamilton’s equa-
tions,

dxi

dt
5

]H

]pi
,

dpi

dt
52

]H

]xi
, xi5~r ,z,f!,

pi5~pr ,pz ,pf!. ~4!

SinceH is independent off, pf is conserved, and the syste
describes motion with two degrees-of-freedom in
positive-definite effective potential

Veff[
1

2mr2 S pf2
q

c
c D 2

. ~5!

To simplify the discussion and elucidate the physics,
define scale factors,

V0[
qB0

mc
, V0[

mV0
2r s

2

8
, p0[~2mV0!1/2. ~6!

V0 is the cyclotron frequency of a particle in a unifor
magnetic field of strengthB0 ; V0 is the energy of a particle
in such a field with a gyration radius ofr s/2; andp0 is the
momentum of a particle with kinetic energyV0 . Next we
define scaled displacements and canonical momenta,

r[
r

r s
, z[

z

zs
, pr[

pr

p0
, pz[

pz

p0
, pf[

pfc

qc0
.

~7!

r and z are the fractional radial and axial distances to t
magnetic separatrix. With these definitions, the effective
tential can be expressed as

Veff5V0v~r,z,pf!, v~r,z,pf![
f 2~r,z,pf!

r2
,

f ~r,z,pf![pf2r2~12r22z2! ~8!

and the Hamiltonian becomes
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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H5V0«, «[pr
21pz

21v. ~9!

Applying Hamilton’s equations to Eq.~3!, we obtain

ḟ5
V0

2

f ~r,z,pf!

r2
. ~10!

Thus ḟ changes sign whenf ~and thereforev) vanishes.
Applying Hamilton’s equations, Eq.~4!, to the Hamiltonian,
Eq. ~9!, where the partial derivative ofH is taken with re-
spect toz, we get a force alongz:

FIG. 1. Possible shapes of the scaled effective potentialn(r,0,pf) as a
function of the scaled radiusr in the z5pz50 invariant subspace for fou
values the scaled angular momentumpf, representative of four distinc
cases. I: pf520.12, single asymmetric well touching zero; I
pf520.04,asymmetric double well; III:pf50.05,double potential well
with both minima touching zero; IV:pf50.375, raised potential well.
Downloaded 22 Feb 2004 to 198.35.5.64. Redistribution subject to AIP l
z̈1vz
2z50, vz

2[e2V0r2ḟ5e2
V0

2

2
f ~r,z,pf!. ~11!

From the equation above, it can be seen that atz50, the ion
does not experience a force alongz, so that given the initial
condition z5pz50, the ion will remain in thez50 sub-
space. Equation~11! has a simple harmonic form, thoug
with a nonconstant coefficient multiplyingz. For low-energy
cyclotron orbits, the frequencyvr is close to the cyclotron
frequency,V0 . Unlike vz in Eq. ~11!, vr is not proportional
to e, so that for small values ofe, there is a separation o
frequencies withvr@vz . This holds except at the approac
to the separatrix, wherevr slows down. This case and th
resultant violation of an adiabatic invariant will be discuss
later in this paper. For orbits not close to the separatrix,vr

@vz holds, so that we can averager2ḟ @see Eq.~11!# over
one period of oscillation inr to obtain an averaged forc
along ż. In general, the fast motion can be averaged wh
ever there is a large separation in frequencies of motio22

Sincevz
2}r2ḟ, thez-motion is stable or unstable to pertu

bations fromz50, depending on the sign of^r2ḟ&.
Consider orbits in the invariant subspacez5pz50,

some of which have been explored by WM.9 The orbits are
that of a particle in a 1D effective potentialVeff

5V0v(r,0,pf) and are therefore integrable. Figure 1 sho
four possible shapes of the scaled potential energyv for
representative values ofpf . Figure 2 shows particle orbits
projected onto ther–f plane for each of these cases. O
orbit classification is presented in order of increasing val
of pf .

Case I: pf,21/12. The scaled potential energ
v(r,0,pf) has a minimumv(r,0,pf)50 at r251/21(1/4
2pf)1/2 and →` for r→0, `, resulting in a single well.
FIG. 2. ~Color! Particle orbits in the
potentials of Fig. 1 withr s510 cm,
and «5scaled energy. I:«50.01~a!;
0.2 ~b!; 0.4 ~c!; II: «50.1 ~a!; 0.18~b!;
0.4 ~c!; III: «50.05~a!; 0.05~b!;
0.2 ~c!; and IV: «50.035~a!; 0.2 ~b!;
0.4 ~c!.
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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with low, medium, and high energy. Orbits~a!, with «50.01,
and ~b!, with «50.2, are both cyclotron orbits outside th
o-point atr 57.07. They have negative averager2ḟ and are
therefore unstable to small perturbations inz. Orbit ~c!, with
«50.4, extends over a wider range ofr, including both in-
side and outside the o-point, forming a figure-8. The or
shown has negativêr2ḟ&, but similar shaped orbits ma
have positivê r2ḟ&.

Case II: 21/12,pf,0. In addition to the zero ofv as
in case I, there are extrema atr25@16(1112pf)1/2#/6, re-
sulting in a double well. Figure 2~II ! shows three represen
tative orbits for this case. Orbit~a!, with «50.1, is trapped
near the bottom of the outer well. Orbit~b!, with «50.18,
oscillates about the inner minimum and is axis-encircl
orbit. Orbit ~c!, with «50.4, extends over both minima
forming a figure-8 with the inner lobe encircling the axis. A
of these orbits have negativêr2ḟ& and are therefore un
stable to small perturbations inz.

Case III: 0,pf,1/4. There are two minima wherev
50, at r251/26(1/42pf)1/2. Figure 2~III ! shows three
representative orbits for this case. Orbits~a! and ~b! both
have the same scaled energy«50.05, with ~a! oscillating
about the outer well, outside the o-point, and~b! about the
inner well, inside the o-point. Both execute cyclotron orbi
and both have negativêr2ḟ&. Orbit ~c!, with «50.2, ex-
tends over both wells, resulting in a figure-8 shape, w
positive averager2ḟ. This is the case discussed in gre
detail in this paper, since the transition between cyclot
and figure-8 orbits which occurs in this range ofpf and the
resultant crossing of the separatrix results in the breakd
of an adiabatic invariant which is otherwise conserved in t
low e system. Thus, from now on, positivepf figure-8 orbits
will be referred to simply as figure-8 orbits.

Case IV: 1/4,pf . There is a single potential well with
a raised minimumum,v.0. Figure 2~IV ! shows three repre
sentative orbits for this case, with«50.035, 0.2, and 0.4. All
betatron orbits haveḟ.0.

III. ORBIT STABILITY AND THE r-AVERAGED
POTENTIAL

Transitions between the orbit types enumerated in Se
may occur when particles move out of thez5pz50 sub-
space. Accordingly, we now consider the stability of orbits
perturbations out of this subspace.

Figure 3 shows the shape ofv(r,z,pf) vs r for four
elevations inz for case III. The radial zeroes ofv are found
from Eq. ~8!,

r25 1
2$~12z2!26@~12z2!224pf#1/2%. ~12!

ḟ is negative in the interval between the two zeros and p
tive elsewhere. For the raised potential it is everywhere p
tive. From Eq.~11!, the force alongz is stabilizing for ḟ
.0, thus the raised potential well exerts a stabilizing fo
on the ion. Equation~12! shows that the destabilizing regio
between the zeros vanishes forz2.12(4pf)1/2. It follows
that any ion withpf.0 moving to largeruzu is subject to a
restoring force towards thez50 midplane as the central ba
rier in the double potential well lowers, as seen in Fig.
Downloaded 22 Feb 2004 to 198.35.5.64. Redistribution subject to AIP l
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reducing the time spent by the ion in the negativeḟ part of
the trajectory. With a finitez-velocity directed away from the
midplane, the positivepf ion eventually will reach a region
of z wherev(r,z) has the shape of a raised single poten
well. Thereḟ will be positive everywhere along the trajec
tory and ion will experience a positive restoring force at
points along its trajectory. In ion dynamics, the traversal o
the barrier between wells and the resultant crossing of
separatrix corresponds to a change of orbit from cyclotron
figure-8. If the initialpz is high enough for the particle to
reach the single raised-potential-well region, the orbit w
then become betatron. The restoring force alongz, propor-
tional to the averagedr2ḟ, increases with absolute valu
of z.

For negativepf orbits @cases I and II, Fig. 1~I!, 1~II !#,
ḟ,0 on the left part of the trajectory alongr, since
v(r,z,pf) has only one zero in this range ofpf , so thatḟ
changes sign only once. In this case, ion motion to hig
absolute value ofz does not necessarily increase the rest
ing force, as occurs in thepf.0 cases, III and IV.

For a highly prolate~smalle! FRC,vr@vz for all orbits
whose energy is not too close to the separatrix, i.e., to the
of the potential barrier that divides the double well. In oth
words, the conditionvr@vz applies for all orbits which are
not close to the transition between cyclotron and figur
motion, since such a transition coincides with a slow-do
of frequencyvr , much as the frequency of a pendulu
slows down as it approaches the top along a trajectory
separates oscillating from circulating motion. In cases wh
the conditionvr@vz holds, the average force constant f
motion alongz can be found by using Eq.~11! and integrat-
ing e2V0*r2ḟdt over one period of oscillation inr. This
provides a qualitative picture of the potential well in whic
an ion moves after averaging over fast motion inr. Since the
sign of the radial-weighted average azimuthal drift,^r2ḟ&,

FIG. 3. n(r,z,pf) vs r for pf50.23, Case III, withz50.0, 0.1, 0.2, and
0.3. Forpf.0, the barrier in the double potential drops asuzu increases,

until n(r,zpf) turns into a single raised potential well.ḟ is negative in the
interval between the two zeros and positive elsewhere. For the raised p

tial ḟ is everywhere positive.
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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determines the stability to perturbation out of thez50 plane,
cyclotron orbits which do not encircle the major axis, all
which have a clockwise angular drift, are unstable. Hig
energy figure-8 orbits drift counterclockwise and are the
fore stable to perturbations; lower energy figure-8 orbits d
clockwise and are therefore unstable to perturbations ou
the subspace. The clockwise drift is due to the fact that lo
energy figure-8 orbits spend more of their time near the c
tral barrier separating the double potential~see case III in
Fig. 1! whereḟ is negative and therefore get a net negat
angular drift. The fact that the central barrier in the symm
ric double potential gives a negative contribution to angu
drift also explains why positivepf ions show better confine
ment. The symmetric double well becomes more narrow
the potential barrier drops with increasing absolute value
z, as shown in Fig. 3. As cyclotron orbits move away fro
z50, their energy is eventually high enough to cross
separatrix whose area shrinks with increasinguzu and turn
into figure-8 orbits. As the barrier alongr falls further, they
will eventually turn into figure-8 orbits with positive averag
r2ḟ, feeling an attractive force towardsz50.

For orbits away from the separatrix, wherevr@vz , we
can obtain a quantitative picture of the averaged poten
alongz in which an ion moves after averaging over the fa
motion in r. Segregating thez-dependent parts to Eq.~7!
yields

v~r,z,pf!52@r2~12r2!2pf#z21
r2

2
z41g~r!,

~13!

wherev(r,z,pf) is a scaled potential@Eq. ~8!#, and thez
independent parts of the expression are segregated u
g(r). For regular motion, a new effective scaled potent
^v(z)&, is obtained after averaging over fast oscillations inr.
The variable of fast motion,r, drops out andpf is always a
constant of motion, so that^v(z)& represents averaged mo
tion in a one-dimensional potential alongz. The shape of the
averaged potential alongz for pf.0 ions is either a single
or a double well centered aroundz50. Figures 4~a! and 4~b!
show numerically calculated phase-space plots,p0pz vs zsz
for higher and lower amplitudes of oscillation alongr, re-
spectively. It can be seen that the potential alongz is either a
single or a symmetric double potential well, with the locati
of the minima determined bypf and the energy of oscilla
tion alongr. Fast oscillations due to the fastr motion are
superimposed on the closed curves inpz vs z phase space in
Fig. 4. Jr is a scaled adiabatic invariant, which will be di
cussed in much detail in the next section, and the motio
regular.

A figure-8 orbit can be approximated as executing a n
linear z-dependent oscillation:

r5rh1 (
n51

`

An cosnv~ t2t0!, ~14!

whererh is the location of the top of potential barrier th
separates the two potential wells for 0,pf, 1

4, see Fig. 1. It
is computed by finding ]v(r,z,pf)/]r50 where
]2v(r,z,pf)/]r2,0:
Downloaded 22 Feb 2004 to 198.35.5.64. Redistribution subject to AIP l
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rh
25 1

6$~12z2!1@~12z2!2112pf#1/2%. ~15!

Keeping only the lowest order terms in Eq.~10! and drop-
ping the subscript onAn :

r'rh1A cosv~ t2t0!, ~16!

whererh , A, andv are functions ofz. Calculating averaged
terms,^r2&5rh

21 1
2A

2 and^r4&5rh
45 5

2rh
2A21 3

8A
4, and sub-

stituting for r into Eq. ~13! produces, after dropping al
z-independent and oscillatory terms,

^v~z!&'z4S rh
2

2
1

A2

4 D 2z2S rh
2~12rh

2!2pf

1
A2

2
~126rh

2!2
3

8
A4D . ~17!

The first term in the coefficient forz2 is positive since
rh,1 and it can be shown graphically~Fig. 5!, that atz50

rh
2~12rh

2!2pf.0 ~18!

for all 0,pf, 1
4.

Using Eq.~15!, it can be easily shown that for 2z2,1

FIG. 4. Phase-space plots,pz vs z, for a high and a low radial-energy ion
having regular motion.~a! High radial energy: The shape of averaged p
tential alongz is a single potential well.~b! Low radial energy: The shape o
averaged potential alongz is a double potential well.
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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126rh
2,0 ~19!

at all value ofpf . It follows that the contributions from
amplitude of oscillation terms,A, to z2 are positive, at leas
for smaller values ofz. Thus for higher amplitudes of oscil
lation alongr such that

rh
2~12rh

2!2pf,2
A2

2
~126rh

2!1
3

8
A4 ~20!

the coefficient multiplyingz2 is positive andz50 is a global
stable minima of ther-averaged motion. Thus at higher am
plitudes of oscillation,A, alongr, the averaged motion alon
z is in a single well with a potential given bŷv(z)&. At
lower values ofA, the z2 term in Eq.~17! gives a negative
contribution, resulting in a double well, symmetric abo
z50. To get an approximation for the location of the minim
of this averaged symmetric double well, we can approxim
A and rh as constants. Forz2!1, Eq. ~15! can be approxi-
mated as

rh
2'~K12K2z2!, ~21!

where K15 1
6(11C1), K25 1

6(11(1/C1)), and C15(1
112pf)1/2. It follows that K1.K2 for all positive pf .
Dropping the second term:

rh
2'K1 . ~22!

The criterionz2!1 is a reasonable assumption, except
cases whereA is low andpf, 1

8. This is due to the fact tha
lower values ofA andpf mean higheruzu for the location of
a minima. Substituting Eq.~22! into Eq.~17! and assumingA
is independent ofz, we see that for smallerA the coefficient
of z2 in Eq. ~17! is negative, and̂ v(z)& can be approxi-
mated as

^v~z!&5Dz42Lz2, ~23!

FIG. 5. rh
2(12rh

2) andpf , vs pf . Intersection occurs at the critical poin

pf5
1
4.
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where D and L are positive coefficients. Completin
the square shows that the potential alongz has minima at
z56AL/2D, resulting in a symmetric double potential we
alongz.

For pf. 1
4, the coefficientL is negative, even forA

50, thus^v(z)& is minimized atz50 and all betatron orbits
oscillate in a single potential well inz. This is perhaps not
surprising sincepf. 1

4 is a raised potential inr, so r2ḟ
.0 everywhere along the orbit, exerting a stabilizing forc
Eq. ~11!.

It can be seen from Eq.~17! that for higher values of
pf , L in Eq. ~23! is smaller and the two minima in̂v(z)&
are located closer together. This can be explained by the
that the potential barrier that separates the two minima of
double potential inr is lowered with increasingpf , thus the
time spend in the destabilizing region, whereḟ,0, is less-
ened, leading to stabilization at loweruzu.

Figure 6 shows the ion kinetic energy alongz, V0pz
2, vs

z, from numerical simulation using the full Hamiltonia
equations and also from motion in the approximate avera
potential given by Eq.~17! with rh given by Eq.~21!. Agree-
ment between the two is good at smaller absolute valuesz
where thez2!1 assumption holds. The full Hamiltonia
simulation shows a smaller maximum excursion alongz than
that of the estimate, Eq.~19!, which does not take account o
higher order terms inz.

The above derivation assumed figure-8 orbits. Howev
as previously noted all cyclotron orbits eventually move in
thez region where the barrier of the double potential alonr
is sufficiently low so that they are able to cross it and th
become figure-8 orbits. Then the same approximation

FIG. 6. The solid black line is the averagedz-directed kinetic energy,
V0^pz

2&, obtained using Eq.~17! with rh given by Eq.~21!. The oscillating
curve isV0pz

2 obtained from the full-Hamiltonian numerical simulation. I

both casespf5
1

16, «50.2, and amplitude of oscillation alongr is
A50.5028. The full-Hamiltonian simulation shows fastr oscillations su-
perimposed on the averaged potential.
icense or copyright, see http://pop.aip.org/pop/copyright.jsp



e
or
o

l-

the

in-

953Phys. Plasmas, Vol. 11, No. 3, March 2004 Regular and stochastic orbits of ions . . .
FIG. 7. ~Color! The curves on the graph indicate th
location alongz where the separatrix is approached f
corresponding values ofJr . Each curve corresponds t

a different value ofpf, wherepf5
1

16,
1
8,

3
16, and

7
32.

Lower values ofpf have higherz intercepts. The curve

disappears at the critical valuepf5
1

14. For pf5
3

16,
numerical simulations of orbits were made at four va
ues ofJr at closely spaced values ofz. The red stars
indicate cases where the orbits were stochastic and
blue stars where the orbits were integrable. Forpf

5
1

16, the region above the curve is marked as conta
ing regular~figure-8! orbits and that below containing
stochastic~both figure-8 and cyclotron! orbits.
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used in Eq.~17! can be applied withrh evaluated at the
location of transition of cyclotron to a figure-8 orbit. Figu
7, discussed more fully in the next section, shows thez lo-
cation, as a function ofJr where the transition of cyclotron
to figure-8 orbits occurs for different values ofpf .

For a particular orbit, thez location of a minima in
^v(z)& occurs where the averager2ḟ over one period of
oscillation inr is equal to zero. Higher amplitudes of osc
lation, A, alongr lead to lower absolute values ofz at which
the minima in^v(z)& occurs since the amount of time spe
in a ḟ.0 part of the trajectory increases relative to tim
spend in theḟ,0 part of a trajectory for higher values ofA,
see Fig. 1, curve III. Thus higher values ofA or higher values
of pf result in a more closely spaced minima of the dou
potential well inz, until the two wells merge atz50.

IV. SEPARATRIX CROSSING AND BREAKDOWN
OF THE ADIABATIC INVARIANT

The dynamics described in the previous section for
motion in both single or double effective-potential wells inz
apply to cases of integrable motion. For cases wherevr

@vz , there exists an adiabatic invariant,Jr , which is con-
served up to an order ofe @e is defined in Eq.~2!#.18,19 Jr is
the area enclosed by a contour of constant energy, keepz
andpz constant:

Jr[
1

2p R prdr; ~24!

Jr is the scaled action:

Jr5
Jr

p0r s
. ~25!

For a large elongation device,Jr is adiabatically conserved
except during the crossing of the separatrix, which result
transitions between figure-8 and cyclotron orbits. Cyclotr
orbits feel an average force away fromz50, so that as the
ion moves towards higheruzu values, its orbit will begin to
approach the top of the barrier that separates the two wel
Downloaded 22 Feb 2004 to 198.35.5.64. Redistribution subject to AIP l
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r, Fig. 3, and its frequencyvr will slow down. For smooth
Hamiltonians, the nonlinear frequencyvr near the separatrix
has the following form:21

vr~h!5
FV0

ln~G/uhu!
, ~26!

where F and G are constants that depend onVeff , h[(E
2Es)/Es , andEs is ther directed energy at the separatri
Es5V0v(rh ,z,pf). At the approach to the separatrix, th
frequencyvr slows down. Under these conditions, thevr

@vz criterion no longer holds andJr conservation is vio-
lated, resulting in stochastic motion. Since this type of tra
sition occurs for nearly all orbits that are at any point cyc
tron, it can be concluded that such orbits are, in gene
nonintegrable. There is a very small fraction of very low
energy cyclotron orbits where the guiding-center theory
proximation applies. Excluding this small class of cyclotr
orbits, a positivepf ion must, for all times, be in a figure-8
or betatron orbit for integrable motion. Comparing Eqs.~11!
and ~26! we can see thatvr@vz condition begins to break
down around

e
ln~G/uhu!

F
;O~1!. ~27!

Rearranging the above equation, we can obtain an appr
mate form for the distance from the separatrix~in terms of
dimensionless energy! at which the adiabatic invariance o
Jr begins to break down. Labeling this asd, whered is just
the value ofh below whichJr is violated, we get

d;O~Ge2F/e!. ~28!

In numerical simulations we found thatd;0.05 is sufficient
to ensure the adiabatic conservation ofJr .

For figure-8 orbits,Jr will be conserved in one of two
cases:

Case A: The actionJr is high enough so that the io
executes a figure-8 orbit withvr@vz when it passesz50:
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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Jr.
1

2p R S ~11d!v~rh,0,pf!2S pf

r
2r~12r2! D 2D 1/2

dr.

~29!

The actionJr is evaluated in thez50 subspace when th
energy alongr is just high enough for the ion to pass ov
the energy barrier at some finite speed and execute figu
orbits. The factor~11d!, with d;0.05, ensures that the mo
tion is not too close to the phase-space separatrix. Fig
4~a! and 4~b! are examples of such orbits. A stochastic
criterion for untrapped particle ions was also derived
BDJY.13 It sets the boundary on stochastic motion by requ
ing the total energy to be above a certain value for a gi
value of pf . The BDJY criterion while working well for
most cases of interest, less accuracy under certain condi
due to the fact that it uses the total energyH, rather than the
energy ofr-oscillation, which determinesJr .

FIG. 8. Regular motion: Oscillation in one of the two minima inz with
amplitude ofz motion just below the critical amplitude,«50.2. The lower
figure is a Poincare´ surface-of-section.
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Case B: A more complex case ofJr adiabatic invariance
occurs at lower values ofJr which do not satisfy the crite-
rion of Eq. ~21!. In this caseJr can still be conserved if an
ion oscillates in one of the two potential wells inz with an
amplitude low enough so that it does not pass into the
bidden lower region ofuzu, where the crossing of the separ
trix resulting in a transition to a cyclotron orbit occurs. Fi
ures 8 and 9 showpz vs z and the corresponding Poinca´
plots for integrable and stochastic motion, respectively,
amplitudes ofz oscillation just below and just above th
critical.

Let us refer to the amplitude ofz oscillation about one of
its nonzero minima alongz, given by^v(z)&, as the critical
amplitude, if above this amplitude the ion gets close to
separatrix~where how close is determined byd, which was
found numericallyd;0.05!. This critical amplitude ofz os-
cillation, below which the orbits are integrable, is a functi
of Jr . Critical values ofz where the approach to the separ
trix occurs are plotted as a function ofJr in Fig. 7. The
actual crossing of the separatrix corresponds to a trans
of a figure-8 to cyclotron orbit. The curves were obtained

FIG. 9. Stochastic motion: The amplitude of oscillation in one of the t
minima alongz was above the critical, resulting in chaotic motion,«50.2.
The lower figure is a Poincare´ surface-of-section.
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computingJr of an orbit in the vicinity of the separatrix fo
a set of values ofz,

Jr5
1

p E
rmin

rmaxH v~rh ,z,pf!2Fpf

r
2r~12r22z2!G2J 1/2

dr,

~30!

wherez andrh are kept constant during integration@rh is a
function of z given by Eq.~15!#. Equation~30! was evalu-
ated for different values ofpf to find Jr for a table of values
of z, Fig. 7. Thez-intercept in Fig. 7 coincides with the poin
where the potential barrier inr disappears and a single raise
potential forms, the condition necessary for betatron or
which feel a force towardsz50 in all cases. It therefore
follows that, for a given value ofpf , thez intercept in Fig.
7 is the highest possible location of a minima in^v(z)&.
Since it is also the location of the critical amplitude forJr

50 in Fig. 7, it can be seen that the critical amplitude
z-oscillation goes to zero asJr goes to zero, resulting in a
single stationary orbit for each value ofpf .

FIG. 10. Phase-space plot for oscillation at the critical amplitude
Jr;0.061.

FIG. 11. Phase-space plot for oscillation at the critical amplitude
Jr;0.02. Thecritical amplitude of oscillation decreases with decreas
value ofJr. ~Compare with Fig. 10.!
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To check that the oscillations above the critical amp
tude in one of the two minima alongz result in stochastic
orbits, numerical simulations using the full Hamiltonian co
were made. For example, atpf53/16, numerical simula-
tions of orbits at four values ofJr were made, each for 5–1
closely spaced values ofz. The red stars indicate cases whe
the orbits were stochastic and the blue stars where the o
were integrable. These results show the approximate con
vation of the adiabatic invariantJr for oscillations inz below
the critical amplitude.

Figures 10 and 11 showpz vs z @Eq. ~7!# for critical
amplitudes ofz oscillation for two values ofJr . In both
figures, Jr is approximately conserved~fluctuates by less
than 10%!. If the oscillations went over the critical ampli
tude,Jr would change by approximately a factor of 2 due
the crossing of the separatrix and the transition to cyclot
motion. The figures show that higher values ofJr have a
greater range of amplitudes alongz and approach closer to
z50. Thus, all else being equal, particles with higherJr will
have regular motion for a greater range ofpz and uzu-values.

For a given value ofpf , the highest possible value ofz
where the minimum of̂v(z)& occurs can be found by settin
the square root in Eq.~12! to zero and solving forz. This
also gives they-intercept in Fig. 7:

z25122pf
1/2. ~31!

Using the fact that the total energy,H is conserved and tha
Jr is an adiabatic invariant, except at the crossing of
separatrix, and requiring thatpz

250 at or below the critical
amplitude~to avoid the crossing of the separatrix!, we can
now derive a condition for trapped particle orbits that ad
batically conserveJr . This is done by finding an upper limi
on energy of oscillation alongz in the averaged potentia
^v(z)&, for a given value ofJr . As was shown in the previ-
ous section,Jr, or identically the amplitude of oscillation
along r, A, determine^v(z)&. Since the total energy of an
adiabatic system can be expressed as a function ofJr , z, and
pz , an upper limit onH can be found that for a given valu
of Jr will ensure that the energy of oscillation alongz, de-
termined byz and pz, does not exceed critical amplitude
The condition for the adiabatic conservation ofJr for
trapped particle orbits thus becomes

H,~11d!V0v~rh~Jr!,zc~Jr!,pf!, ~32!

wherezc can be expressed in terms of the adiabatic invari
Jr , and similarlyrh , which is evaluated atzc , can also be
expressed in terms ofJr . The inequality above thus impose
a constraint onH determined only by the constant of motio
pf and the adiabatic invariantJr . If this constraint is satis-
fied,Jr will be a conserved adiabatic invariant of trapped i
orbits. To obtain this constraint in terms ofJr , we begin by
estimating the location of the critical amplitude,zc , as a
function of Jr . These values are plotted in Fig. 7 for fou
values of pf . From this figure we can obtain an ove
estimate onzc in all cases by approximating the curves a

zc5C~Jmax2Jr!1/2, ~33!

where

r

r
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FIG. 12. ~Color! Poincare´ plot in thez50 cross section.
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C5
~122pf

1/2!1/2

AJmax

. ~34!

An overestimate onzc is needed since it ensures that t
separatrix crossing will not occur.C was obtained by solving
122pf

1/25CJmax
1/2 , where 122pf

1/2 is thez intercept in Fig.
7 @see Eq. ~31!# and Jmax is evaluated atz50 for Veff

5V0v(rh,0,pf). Substituting forzc from Eq. ~33! into Eq.
~32!, where v(rh ,zc ,pf) is defined in Eq.~8!, using rh

2,
evaluated atz5zc , given by Eq.~21! and expanding 1/rh

2,
we get, after keeping only lowest order terms of orderzc

2 and
simplifying the expression

H,~11d!V0

1

K1
~A12A2C2~Jmax2Jr!!, ~35!

where

A15~pf2K1~12K1!!2, ~36!

A25A1

K2

K1
12A1

1/2~K2~12K1!1K1~12K2!!. ~37!

Thus, given an ion’sJr , H, andpf , Eq.~35! determines
whetherJr is an adiabatic invariant for a trapped figure
orbit. Case A, in the beginning of this section, places a lim
on Jr for untrapped ion orbits, above whichJr is an adia-
batic invariant, for those types of orbits. As previously me
tioned Jr invariance breaks down for all cyclotron orbit
The location alongz of a transition of a cyclotron to a
figure-8 orbit is given by Eq.~33!. At uzu belowzc , the orbit
is cyclotron, and above it is a figure-8. It is clear that t
above approximation is not valid at lowpf and energies
where thez2!1 assumption breaks down. For cyclotron o
bits, the actionJr is the same as the scaled magnetic mom
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m̂, where m̂5m/p0r s . They are abiabatic invariants up t
the point of a transition. Their invariance is violated near

z'C~Jmax22m̂ !1/2 ~38!

at which pointJr changes by a factor of;2. This neglects a
possible interaction between ther andz degrees-of-freedom
The values ofz for which m is violated are shown in Fig. 7
For figure-8 orbits, it sets the limit on the highest possib
amplitude of oscillation in one of the two symmetric pote
tial wells that prescribe averaged motion along thez-axis.

The stochasticity criterion given by Eq.~35! can be used
to calculate the percentage of stochastic particles for a g
distribution of energies and angular momenta. For exam
a low energy beam parallel to thez axis with V0pz

2!T,
where T is the perpendicular temperature, withT
5V0v(rh,0,pf) and pf51/5 will have 85% regular orbits
~regular meaning those that adiabatically conserveJr). This
calculation was performed by finding the percentage
figure-8 orbits for this distribution. This particular calcula
tion can be used when the parallel energy of the beam ca
assumed to be essentially zero, relative to perpedicular t
perature. In this case, sincepz'0, all figure-8 orbits of the
initial distribution are either at the critical amplitude, or
the turning point of oscillation aboutz50.

Figure 12 shows Poincare´ plots on thez50 section for a
range ofJr values. In polar coordinates, the radius is equa
Jr and the angle tour , which are the action-angle variable
for the r-motion. The selection of thez50 plane eliminates
inclusion of particles trapped in the symmetric-in-z potential
wells, e.g., Figs. 8~a!, 10, and 11. Each color represents
different initial condition~different Jr values at fixedpf).
Taking theJr andur variables as being on the smaller cro
section of a torus, we can see that for values of~the scaled!
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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Jr less that 0.095, the dots representing cyclotron or
show stochastic behavior. At higher values ofJr , closed
circles occur, representing figure-8 orbits, showing that
motion is integrable. The set of clearly-defined closed circ
c–g, representing integrable motion, begins just above
critical value ofJr , i.e., circleb, and are part of a continuou
set of closed KAM curves.22 The circle labeledb corre-
sponds to figure-8 orbits with just enough energy to cross
central barrier ofVeff . The integrability of orbits which ex-
ecute a figure-8 orbit atz50 is expressed in the conditio
given by Eq.~29!. Since these orbits never undergo a tran
tion, there is no limit on their amplitude of oscillation alon
z.

A gap in the action-angle Poincare´ plot in Fig. 12 sepa-
rates stochastic and integrable motion. It is due to the
that the lowest energy figure-8 orbit hasJr about twice as big
as that of the highest energy cyclotron orbit, because
figure-8 orbit oscillates across two potential wells and cyc
tron orbit across one. Thus the radius of theb circle in Fig.
12 is about twice as big as that of thea circle.

V. CONCLUSIONS

The dynamics of single ions in a large aspect ratio F
were explored. A fuller description of ion orbits in thez5z
50 subspace was presented. Stability of these orbits to
of-plane perturbations was shown to depend on^r2ḟ&. For
integrable orbits,vr@vz , the averaged motion is in a sing
or double symmetric potential along the major axis,z. The
locations of the minima alongz of this averaged potential ar
a function of the invariantJr and conservedpf . Higher
values ofJr and pf lead to closer-spaced double-potent
wells, until the two wells merge into a single potential ce
tered aroundz50. To be integrable, an orbit must either ha
a high enough energy alongr to execute figure-8 or betatro
motion in thez50 cross section or be trapped in one of tw
averaged potentials alongz. Two criteria for stochastic tra
jectories were derived. The first criterion, Eq.~29!, for un-
trapped orbits, was shown to depend onJr and pf . The
second criterion is given by Eq.~35!, and ensures that th
amplitude of oscillation alongz in one of two potential wells
is low enough so that the ion does not experience a trans
to cyclotron motion. It is found that the amplitude of int
grable oscillations alongz decreases with decreasingJr , and
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goes to zero as the cyclotron radius goes to zero. SincJr

determines the shape of averaged potential alongz, for a
given value ofpf , particle dynamics can be represented
a two-dimensional torus with Poincare´ cross section ofuz

andJz . For low values ofJz @amplitudes of oscillation along
z below the critical value given by Eq.~35!#, Jz is conserved
and Poincare´ cross sections show closed circles. The onse
stochastic behavior which occurs at higher values ofJz and
island formation can be studied using KAM and perturbat
theories, where the Hamiltonian is expanded around min
in z estimated by Eq.~23!. Different values ofJr give a
family of nested tori.
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