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Abstract

The nonlinear dynamics of a single ion in a field reversed configuration (FRC) were investigated. FRC is

a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular

invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly non-

linear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is

extremely complex, showing different regimes, depending on the values of the conserved canonical angular

momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive an
integrable Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then

used to find resonances and compare to Poincare surface-of-section plots. A regime was found where the

nonlinear resonances were clearly separated by KAM curves. The structure of the observed island chains

was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived,

using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular

momentum and geometry of the device. After a brief discussion of the adiabatic regime, the paper goes on

to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the

unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system
is near-integrable, except in cases of a universal resonance, which results in large island structures, due to

the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this

regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis

showed good agreement with numerical simulations and was able to explain characteristic features of the

dynamics.
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1. Introduction

The field-reversed configuration (FRC), see Fig. 1, is a toroidal-shaped magnetic-field geometry
that appears well suited for confining plasmas for the purpose of the controlled, safe, steady-state
production of fusion energy [1,2]. A primary characteristic that distinguishes the FRC from most
other toroidal fusion devices is that it has no toroidal magnetic field. Thus charged-particle
motion in FRCs cannot be approximated as being guided along magnetic field lines. For most
fusion reactors, such as the tokamak, the magnetohydrodynamic (MHD) theory [3] has been used
successfully to investigate the physics at fusion-relevant regimes. For the FRC, however it is well
known [4,5] that in the fusion-relevant regime the single-particle Hamiltonian approach presents a
powerful, applicable method to understand the qualitative features of ion dynamics.
The single ion dynamics inside the FRC have equations identical to those of two strongly

coupled nonlinear oscillators. The strong nonlinearities make for a very interesting system with
various regimes that depend on the values of the coupling constants. Thus both, a highly non-
linear regime with a set of island chains caused by nonlinear resonances and a linear regime with a
single large universal resonance caused by the intrinsic degeneracy can be observed.
Stochastic dynamics and resonances in nonlinear oscillators have been extensively studied in

various cases of theoretical and practical interest [6–12]. The present paper is the first detailed
study of the model of coupled resonances that are related to FRC. Using averaging methods and
perturbation theory, we investigate particle dynamics in the FRC under the variation of two
control parameters: geometric factor b, which is inverse elongation (or aspect ratio of the FRC in
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Fig. 1. Geometry of the field-reversed configuration of magnetic field. Lines correspond to the cross-section of surfaces

of constant magnetic flux, U (see Eq. (2).
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Fig. 1) and dimensionless azimuthal angular momentum, P , that is conserved due to the azimuthal
symmetry of the field. It is found that variation of b and P significantly affect the resonance
structure and level of stochasticity.
The paper is organized as follows: In Section 2 the problem is set up and a two-dimensional

Hamiltonian is derived using conservation of azimuthal angular momentum, P . The derived
Hamiltonian is then used to discuss possible types of particle orbits that can occur in the FRC for
P > 0 ions. In Section 3, the impact of P and elongation on resonance structure and stochasticity
is studied using the Hamiltonian derived in Section 2. First, the unperturbed Hamiltonian H0 is
derived using averaging methods. It is found that for certain range of values of elongation and
azimuthal angular momenta, the unperturbed Hamiltonian is sufficiently nonlinear and the per-
turbation sufficiently small, that KAM theory applies and a resonant island structure bounded by
KAM curves is obtained. The paper then goes on to discuss the breakdown of KAM theory with
variation of parameters and the onset of strong chaos. The adiabatic regime, occurring in the large
elongation (small b) limit, where a significant frequency separation occurs between the two de-
grees of freedom is also discussed. In Section 4, we turn to the near-integrable case that occurs in
the limit of higher azimuthal angular momenta. It is shown that in this limit, the unperturbed
Hamiltonian has the form of two uncoupled harmonic oscillators, so that action-angle variables
of a simple harmonic oscillator can be used in the Hamiltonian expansion. After explaining why
the system is near-integrable at higher azimuthal angular momenta for elongation close to or less
than one, we turn to the case of a large one-to-one universal resonance. It is shown that this large
resonance is a consequence of intrinsic degeneracy, while the set of smaller resonances occurring
at smaller azimuthal angular momenta values is a result of accidental degeneracy.
2. Equations of motion and orbit types

2.1. Basic equations of motion

The Hamiltonian for a nonrelativistic particle of charge q in a magnetic field is given by [13]:
H ¼ 1

2
ðpr

�
� qArÞ2 þ ðpz � qAzÞ2 þ

p/

r

�
� qA/

�2
�

ð1Þ
where Ar;z;/ are the components of the vector potential and pr;z;/ are the canonical angular mo-
menta. As a representative FRC system, a Solov’ev model [14] is used in which the plasma
pressure has a linear dependence on magnetic flux U:
U ¼ rA/ ð2Þ

In this model, the magnetic flux is described by [15]:
U ¼ R2Ba

r2

2R2
1

�
� r2

R2
� b2z2

R2

�
ð3Þ
where Ba is the amplitude of the magnetic field at the center of the device at r ¼ z ¼ 0, R is the
radius of the separatrix on the midplane at z ¼ 0, and 2Z is the distance between X -points along
the z-axis: b ¼ R=Z. Eq. (3) shows a pressure profile that falls to zero at the boundary of the device
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where U ¼ 0. From Eqs. (2) and (3), we can obtain a vector potential, A/. Since the full vector
potential of the FRC has only a / component, we get the following expression for the vector
potential:
~A ¼ A//̂ ¼ Ba

r
2

1

�
� r2

R2
� b2z2

R2

�
/̂ ð4Þ
where /̂ is a unit vector in the azimuthal direction. Substituting the vector potential from Eq. (4)
into Eq. (1), the Hamiltonian becomes:
H ¼ 1

2m
p2r

�
þ p2z þ

p/

r

�
� qA/

�2
�

ð5Þ
where p/ is the conserved canonical azimuthal angular momentum. Substitution of A/ from Eq.
(4) into Eq. (5) gives
H ¼ 1

2m
p2r

(
þ p2z þ

p/

r

�
� br 1

�
� r2

R2
� b2z2

R2

��2)
ð6Þ
where b ¼ qBa=2. The azimuthal angular momentum p/ is conserved since there is no angular
dependence in the Hamiltonian. The Hamiltonian above describes a two degree of freedom time-
independent system. After scaling r=R ! r, z=R ! z, pr=bR ! pr, pz=bR ! pz and ðm=b2R2Þ
H ! H , the dimensionless Hamiltonian becomes:
H ¼ 1

2
p2r

(
þ p2z þ

P
r

�
� rð1� r2 � b2z2Þ

�2)
ð7Þ
where P ¼ p/=bR2. The last term is a two-dimensional potential V ðr; zÞ:
V ðr; zÞ ¼ 1

2

P
r

�
� rð1� r2 � b2z2Þ

�2
ð8Þ
After applying Hamiltonian equations of motion
_qi ¼
oH
opi

; _pi ¼ � oH
oqi

ð9Þ
where qi and pi are the coordinate and momentum variables, we get
€r þ rð1þ 2P Þ � P 2

r3
� 4r3 þ 3r5 þ b2z2ð4r3 � 2r þ b2z2rÞ ¼ 0 ð10Þ

€z þ 2b2z P
	

� r2ð1� r2 � b2z2Þ


¼ 0 ð11Þ
Note that the b variable cannot be scaled away since it appears in Eq. (11) as a b2z term, and
effects the time scale of z motion relative to r motion.
From Eq. (11), the force along z is zero when z ¼ 0. Given the initial condition z ¼ pz ¼ 0, the

ion will stay confined to the z ¼ 0 plane, where the motion is one-dimensional and therefore
integrable. The integrable motion in the z ¼ 0 subspace is briefly described in the following sec-
tion.
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2.2. Types of orbits

The possible types of orbits in the z ¼ 0 subspace have been previously discussed [16,17]. For
positive values of P , there are two possible shapes for a potential well V as a function of r. It is
either a double well with minima touching zero or a single raised well. Fig. 2 shows different
shapes of V , for various values of P in the z ¼ 0 subplane. Higher values of P result in a shallower
potential, see also Eq. (7), until there is a transition to a single raised potential at a critical value of
Pc ¼ 1=4. Fig. 3 shows cross-sections of the potential as a function of r for different values of z. It
can be seen that the double potential becomes shallower as jzj increases, eventually turning into a
single raised potential. For values of P above the critical threshold, the entire potential well be-
comes further raised as the ion travels towards higher absolute values of z.
To explain the different types of orbits observed, it is worth noting that the potential V in the

reduced two-dimensional system is actually the kinetic energy in the / direction in the full three-
dimensional system. This is due to the fact that only magnetic fields are present, which exert a
Lorentz force perpendicular to the direction of motion: ~F ¼ q~v �~B, therefore the total kinetic
energy is conserved. It follows that
Fig. 2

P ¼ P
occurs
H ¼ 1

2m
p2r
h

þ p2z þ ðmr _/Þ2
i

ð12Þ
Comparing Eq. (12) with Eq. (6), it is clear that the last terms are equal. Since r2 _/2 is proportional
to V , it follows that _/ changes sign whenever the potential V touches zero (except at the transition
to a single raised potential), therefore the ion reverses its angular direction of motion. Based on
the types of potential described above, we can now explain the three possible types of orbits
observed in the FRC for positive values of P , see Fig. 4. First, there are cyclotron orbits which
correspond to oscillations in one of the two wells of the double potential in the radial direction.
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. Possible shapes of potential in the z ¼ 0 subplane: (a) P ¼ 0:17; (b) P ¼ 0:22; and (c) P ¼ 0:29. Below

c ¼ 1=4, the potential has a shape of a double well, and above a raised single well. The top of the potential barrier
at rhðP ; zÞ, see Eq. (26).
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Fig. 3. Cross-sections of the potential V for P ¼ 0:2: (a) z ¼ 0; (b) z ¼ 0:2; and (c) z ¼ 0:3. For positive P ions, the

barrier in the double potential drops as jzj increases, until it turns into a single raised potential. The barrier between the
two zeros in the potential is the _/ < 0 part of the orbit, while _/ > 0 to the left and to the right of the potential barrier.
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Fig. 4. Possible types of particle orbits for P > 0. Orbits are taken in the z ¼ 0 invariant subspace. The outer circle

indicates the zero in magnetic flux, U (also the boundary of the vessel). The inner circle is at the inner minima of the

double potential for P ¼ 0:2. (a) Cyclotron orbit: ion oscillates in the outer portion of a double well, P ¼ 0:2; (b) figure-
8 orbit: ion oscillates over the entire double well, P ¼ 0:2; (c) betatron orbits: oscillations in a raised potential, P ¼ 0:35.
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They are unstable to displacement from the mid-plane and therefore tend to travel to higher
absolute values of z. The second type of orbits are figure-8 orbits which oscillate over the entire
double potential. Since the barrier dividing the two wells exerts a repelling force, as can be shown
by plotting Eq. (11) as a function of r (keeping z constant), higher energy figure-8 orbits are stable
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around z ¼ 0 while lower energy ones, which spend more of their time transversing the barrier are
unstable around z ¼ 0. All double potential wells become shallower as an ion moves towards
higher values of jzj, so that all cyclotron orbits will eventually have enough energy to cross the
barrier in the double potential (for some nonzero value of z) and turn into figure-8 orbits, thus
eventually feeling a restoring force towards z ¼ 0. The third type of orbit is the betatron orbit,
shown in Fig. 2c, which corresponds to oscillations in a raised potential. It is characterized by
_/ > 0 at all times, which is explained by considering that the potential V never touches zero, and
therefore _/ never undergoes a sign change. Betatron orbits are stable to displacements from z ¼ 0.
3. Resonances and chaos

3.1. Averaged equations of motion

The Hamiltonian in Eq. (7) can be expanded as,
H ¼ Hr0ðpr; rÞ þ Hz0ðpz; zÞ þ �H1ðr; zÞ ð13Þ
where H0 ¼ Hr0ðpr; rÞ þ Hz0ðpz; zÞ is the uncoupled, integrable portion of the Hamiltonian, and � is
the magnitude of the coupled terms. If H1 is normalized to the same magnitude as H0, � gives the
degree of perturbation to the integrable portion of the Hamiltonian, H0. The above Hamiltonian
can be expressed in action-angle variables of the uncoupled Hamiltonian, H0.
H ¼ Hr0ðJr0Þ þ Hz0ðJz0Þ þ �H1ð~J 0;~h0Þ ð14Þ
where ~J 0 ¼ ðJr0; Jz0Þ and~h0 ¼ ðhr0; hz0Þ are the conjugate action-angle variables of H0. Actions Jr0

and Jz0 are the areas enclosed by the unperturbed trajectory in phase-space,
Jr0 ¼
1

2p

I
pr dr; Jz0 ¼

1

2p

I
pzdz ð15Þ
where the integrals are taken over one oscillation in their respective coordinates. Hr0 and Hz0 are
used to evaluate pr and pz, respectively, used in Eq. (15). The equations of motion can be written
as
_Jr0 ¼ ��
oH1

ohr0
; _Jz0 ¼ ��

oH1

ohz0
; _hr0 ¼ xr0 ¼

oHr0

oJr0
; _hz0 ¼ xz0 ¼

oHz0

oJz0
ð16Þ
where xr0 and xz0 are the frequencies of the unperturbed Hamiltonian H0 and ðhr0; hz0Þ are defined
using a generating function [6],
S ¼
X
q¼r;z

Z q

q0

pq dq ð17Þ
where
hr0 ¼
oS
oJr0

; hz0 ¼
oS
oJz0

ð18Þ
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The perturbation term H1 can be expanded in terms of action-angle variables:
H1 ¼
X1

l;m¼�1
Hl;mð~J 0Þ expði~n 
~h0Þ ð19Þ
where~n ¼ ðl;mÞ is an integer vector. In ðr; zÞ variables H1 can be obtained from the Hamiltonian
in Eq. (7),
�H1 ¼ �r2b2z2 þ r4b2z2 þ 1

2
r2b4z4 ð20Þ
If the coupling is sufficiently small and there is sufficient nonlinearity, such that the conditions of
KAM theory are satisfied, there exist a series of resonances bounded by KAM curves. The KAM
curves are perturbed from the uncoupled Hamiltonian H0 and can be obtained using perturbation
theory. Resonance occurs whenever
sxr0 � qxz0 ¼ 0 ð21Þ

where s; q are integers and xr0;xz0 are given by Eq. (16). When the condition given by Eq. (21)
occurs, there are slowly varying terms in the exponent of the expansion of H1 in Eq. (19), leading
to a significant perturbation in the Hamiltonian.
In the absence of resonances, the Hamiltonian given by Eq. (13) can be averaged along z and r

to obtain averaged motion along r and z, respectively. This is equivalent to averaging Eq. (14)
over hz0 to get the averaged r motion and over hr0 to get the averaged z motion, with H1 given by
Eq. (19). All the angle dependent terms in H1 will average to zero, except for the resonant terms
[7,10]. After averaging Eq. (13) over z and r, we obtain HrðrÞ and HzðzÞ, respectively, which
represent averaged Hamiltonians for r and z motion,
HrðrÞ ¼ Hr0ðpr; rÞ þ �hH1ðr; zÞiz ð22Þ

HzðzÞ ¼ Hz0ðpz; zÞ þ �hH1ðr; zÞir ð23Þ

Using these new Hamiltonians, and following the same procedure as before, one can obtain the
new actions Jr and Jz, that would contain higher-order corrections to Jr0 and Jz0. The frequencies
xr and xz obtained using HrðJrÞ and HzðJzÞ can then be used to find the location of resonances,
when
sxr � qxz ¼ 0 ð24Þ

Here, ðxr;xzÞ are corrections to ðxr0;xz0Þ. To find the averaged Hamiltonian along z, we need to
substitute an approximate solution for the r motion into Eq. (7) The motion along r can be
approximated as
r  rh þ A cosðxrtÞ ð25Þ

where rh is the midpoint of oscillation. It is found by setting the derivative of the potential in Eq.
(8) equal to zero and solving for r. Eq. (25) takes the first term in the Fourier expansion of the
motion along r. For b2z2 � 1, rh can be approximated as
rh  ðK1 � K2b
2z2Þ1=2 ð26Þ
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where
K1 ¼
1

6
ð1þ C1Þ; K2 ¼

1

6
ð1þ 1=C1Þ; C1 ¼ ð1þ 12P Þ

1
2 ð27Þ
Substituting Eq. (25) into Eq. (7), expanding and keeping only the highest order nonoscillatory
terms, we get the averaged unperturbed Hamiltonian along z:
Hz 
1

2
p2z þ

1

2
ðDzb

2z2 þ Fzb
4z4Þ ð28Þ
where Dz is a function of P and A, with A given by Eq. (25). The value of Fz is not dependent on P ,
as can be easily confirmed by expanding the potential. It follows that the magnitude of the z4 term
in Eq. (28) stays constant as P is increased. The quadratic term however, changes significantly as P
is varied, which can be seen by expanding the potential given in Eq. (7).
To obtain Hr0, we follow a similar procedure as that used to obtain Hz0 and approximate the

motion along z as,
bz  B cosðxztÞ ð29Þ
where B is the amplitude of oscillation along z. B < 1 for ions confined inside the FRC. It is
convenient to change variables to Dr ¼ r � r0, where r0 ¼ K1=2

1 (see Eq. (26)). Since this is a simple
coordinate shift, the momentum, pr, is not effected by the transformation. Substituting Eq. (29)
into Eq. (7), we get, after expanding the P 2=r2 term in a series and dropping higher-order and
oscillatory terms,
Hr 
1

2
p2r þ

1

2
ðDr Dr2 þ Mr Dr3 þ Fr Dr4Þ ð30Þ
The coefficients Dr, Mr, and Fr are a function of azimuthal angular momentum P , and, in higher-
order, depend on B, or the amplitude of oscillation along z. To lowest order (neglecting amplitude
dependent terms), the coefficients in Eq. (30) can be expressed in terms of K1 and K2 (see Eq. (27))
which are functions of P only. Approximate expressions for Fr and Fz as functions of K1 and K2

will be given in the next section, where the contribution of these terms to nonlinear resonance is
discussed. The above approximations fail for low amplitude cyclotron orbits whose motion
cannot be expanded around r0 ¼ K1=2

1 . The measure of such orbits in phase-space decreases with
increasing azimuthal angular momentum, P .
Eqs. (28) and (30) give approximate unperturbed averaged Hamiltonians for the z and r mo-

tion. From these equations, the actions Jz and Jr can be obtained using Eq. (15). These actions will
be approximately conserved in the absence of resonances. Expressing Hr and Hz in terms of Jr and
Jz, respectively, the frequencies of averaged r and z motion, given by Eq. (16), become
xr ¼
oHr

oJr
; xz ¼

oHz

oJz
ð31Þ
In the next section, the approximate dependence of Hr on Jr and Hz on Jz is derived and the
frequencies xr;xz obtained for the case of ‘‘intermediate’’ values of P where Eqs. (28) and (30)
become further simplified.
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3.2. Nonlinear resonances

The averaged Hamiltonians derived in the previous section can be used to find the location of
nonlinear resonances. Fig. 5 shows the lowest-order values of the coefficients in Eqs. (28) and (30),
as a function of P for the averaged r and z motion. The higher-order amplitude dependent terms
are not included since they vary with different trajectories. It can be seen that all except the fourth
power coefficients are zero around P  Pc. Amplitude dependent terms make a positive contri-
bution, shifting the coefficient curves upward and causing them to intersect the P -axis at a lower
values. Since Pc denotes the transition to betatron orbits and a typical FRC has a significant
amount of figure-8 and cyclotron orbits, this range of P values can be considered as ‘‘interme-
diate’’. Thus in this intermediate range, centered around Pi < Pc, the fourth power terms pre-
dominate for both r and z motion. For typical ion energies used in the numerical simulations,
which allow the ion to explore most of the FRC while remaining inside it, this range is around
0.2 0.3 0.4 0.5
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D r
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Fig. 5. Approximate coefficients for the averaged motion, neglecting amplitude contributions. (a) Fr is the coefficient

for the fourth power term of Hr. Dr and Mr are coefficients for the quadratic and third power terms, respectively.

Although they seem to intersect the x-axis around P  Pc, amplitude dependent terms cause Dr and Mr to shift upwards,

lowering the value of P at which these terms are negligible. (b) Fz is the coefficient for the fourth power term of Hz and

Dz is the coefficient for the quadratic term. Like in the above case, higher-order amplitude dependent terms cause Dz to

shift upwards.
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ð3=4ÞPc < P < Pc. Approximating Hr and Hz in Eqs. (30) and (28) for intermediate values of P , we
get
Hr 
1

2
p2r þ

1

2
Fr Dr4 ð32Þ

Hz 
1

2
p2z þ

1

2
Fzb

4z4 ð33Þ
It will be shown later that variations in Fr and Fz have a weak effect on the unperturbed fre-
quencies, xr and xz, respectively. It follows that higher-order terms can be dropped without
having a significant effect on frequencies. After dropping higher-order amplitude dependent terms,
the coefficients can be approximated as:
Fr  �2þ 15K1 þ
4P
K1

þ P 2

K3
1

ð34Þ

Fz  K1 þ 2K2 � 4K1K2 � 2K2
2 þ 3K1K2

2 ð35Þ

For motion along z, the A2 amplitude terms (obtained by substituting Eq. (25) into the Hamil-
tonian) make a positive contribution to quadratic and fourth power terms, and thus contribute to
stability around z ¼ 0. It follows that oscillations that have higher energies along r are confined
closer to the midplane [17,18]. Both K1 and K2 (see Eq. (27)) are less than one at intermediate
values of P . Looking at Eqs. (34) and (35) or Fig. 5, it can be seen that Fr � b4Fz, except at ‘‘high’’
values of b (close to two), corresponding to oblate geometry. Comparing Eqs. (32) and (33), it can
be seen that for the same amplitudes of oscillation, the frequency of motion along r will be sig-
nificantly higher than along z. Keeping in mind that for these nonlinear oscillators, the frequencies
of oscillation increases with amplitude, it becomes clear that the important primary nonlinear
resonances (those that have the greatest island width and can therefore be easily observed) occur
when Hr � Hz.
Using Eqs. (32) and (33), we can now derive primary nonlinear resonances defined as:
xz=xr ¼ s=q ð36Þ

where s, q are integers and xr, xz are the unperturbed frequencies.
Eqs. (32) and (33) have a Hamiltonian of the form:
H ¼ 1

2
p2 þ 1

2
Fq4 ¼ E ð37Þ
where F and E are constants. The action integral in this case is equal to:
J ¼ 2

p

Z qmax

0

ð2E � Fq4Þ1=2 dq ð38Þ
where qmax ¼ ð2E=F Þ1=4. Expanding the expression inside the integral using the formula
Gðx0 þ DxÞ ¼
X1
n¼0

Gnðx0Þ
ðDxÞn

n!
ð39Þ
where Gnðx0Þ signifies the nth derivative of the function, we get:
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ð2E � Fq4Þ1=2 ¼
ffiffiffiffiffiffi
2E

p
� ð2EÞ�1=2

2
Fq4 �

X1
n¼2

ð2EÞð1=2�nÞ

2n

F nq4n

n!

Yn�1
j¼1

ð2j � 1Þ ð40Þ
Substituting Eq. (40) into the integral in Eq. (38), and integrating, we get an expression for J
J ¼ aE3=4F �1=4 ð41Þ
where a is a constant
a ¼ 27=4

p
1

"
�

ffiffiffi
2

p

5
�
X1
n¼2

1

2nn!ð4n þ 1Þ
Yn�1
j¼1

ð2j � 1Þ
#

ð42Þ
rearanging Eq. (41) and using Eq. (37) to get an expression for the Hamiltonian H in terms of the
conserved action variable J , we get:
H ¼ a�4=3F 1=3J 4=3 ð43Þ
with a defined by Eq. (42). Applying Hamilton’s equation _h ¼ x ¼ oH=oJ to Eq. (43) and then
substituting for J from Eq. (41), we get an expression for frequency as a function of energy.
x ¼ 4

3a
ðHF Þ1=4 ð44Þ
To find the averaged frequencies xr and xz, F in Eq. (44) has to be replaced by Fr and b4Fz,
respectively. Likewise, H should be replaced by Hr and Hz or Hr and Hz which are easily calculated
from H at z ¼ 0:
Hr ¼
1

2
p2r þ V ðr; 0Þ; Hz ¼

1

2
p2z ð45Þ
and are close to Hr and Hz near the elliptical center of the resonance (in accordance with Birchkoff
theorem) [7]. Note from Eq. (44) that x is not sensitive to small variation in F and H , thus we were
justified in dropping smaller order amplitude of oscillation dependent terms in the expressions for
Fr and Fz.
From Eq. (44), we can now obtain a general criteria for nonlinear primary resonance that

occurs at intermediate values of P where Eqs. (32) and (33) apply. Using the expression for fre-
quency given by Eqs. (44) and (36)
HzFzb
4

HrFr
¼ s

q

� �4

ð46Þ
The equation shows that small changes in s=q require large changes in Hz=Hr.

3.3. Location of resonances and the effect of geometry

The amount of stochasticity and location of resonances is strongly affected by geometry of the
fusion vessel. Eq. (46) can be used to compute the location of various nonlinear resonances and
explore the effect of changes in geometry (variation in b). For example, taking b ¼ 1 as a con-
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venient starting point, and using Eq. (46), there is a one-to-one primary resonance around
Hz ¼ ðFr=FzÞHr.
To find the location r of this resonance for the initial condition pr ¼ z ¼ 0, we need to use a

‘‘high’’ value of total energy H , which allows the ion trajectory access to most of the vessel, while
not going far outside the boundary set by U ¼ 0 so that the conditions under which Eq. (33) was
derived are satisfied (see for example Fig. 6). Starting from initial conditions z ¼ pr ¼ 0 and using
Eq. (45), we get: Hz ¼ 1

2
p2z , Hr ¼ V ðr; 0Þ, when t ¼ 0. Applying the conditions Hr þ Hz ¼ H and

Hz ¼ ðFr=FzÞHr to express Hr in terms of the total energy, the location, r, of a one-to-one resonance
at z ¼ pr ¼ 0 is found by solving the following equation for r.
Fig. 6

Bound

energy
HFz=ðFr þ b4FzÞ ¼ V ðr; 0Þ ð47Þ

Fig. 7 shows one-to-one resonances close to r  0:58; 0:95, values which agrees well with the

ones obtained by solving the above equation. Lesser values of total energy H shift the location of
this resonance inward towards lower values of r  rh, while higher H shift the resonance outward.
This is explained by using Eq. (46) where an increase in H would lead to proportionate increases
in Hz and Hr (keeping everything else constant) and therefore an outward shift in the location of a
one-to-one resonance towards higher values of V ðr; 0Þ.
. Cross-section of a trajectory inside the FRC exploring most of the vessel while remaining within its boundaries.

ary of the vessel occurs at U ¼ ð1� r2 � b2z2Þ ¼ 0. Plotted in scaled dimensionless variables, E denotes total

. E ¼ 0:063, _r ¼ 0, P ¼ 0:25, b ¼ 1.



Fig. 7. Overlapping of resonances, leading to an onset of strong chaos (compare with Fig. (8)). The arrows in the figure

point to the elliptic centers of the 1:1 resonances. The number of islands increases near the midpoint, rh  0:7.
E ¼ 0:063, P ¼ 0:23, b ¼ 1.
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From Eq. (46), we can see that (keeping q constant) the number of islands s in a single reso-
nance on Poincare pr vs r plot increases as Hr decreases, keeping the total energy H fixed. Hr is
determined by A, the amplitude of oscillation along r. Since A ¼ r � rh, where r is taken at pr ¼ 0,
we expect to get an increasing number of islands corresponding to s ¼ xz=xr ¼ 1; 2; 3 . . . ; as A
becomes smaller, or as we get closer to the midpoint of oscillation at r ¼ rh. Figs. 7 and 8 show the
increase of islands near the midpoint of oscillation at rh  0:7.
As can be seen in Eq. (33), Fz is multiplied by b4, so that substituting Fzb

4 for F into Eq. (44), we
can see that xz increases linearly with b, while xr which depends only on Fr and Hr is uneffected.
From Eq. (46), a one-to-one resonance occurs whenever
Hz

Hr
¼ Fr

b4Fz

ð48Þ
It follows that an increase in b has a strong effect on the shift in the location of a one-to-one
resonance towards higher amplitudes along r. Comparison of Figs. 7 and 9 shows this shift to-
wards higher value of Hr with an increase in b. Fr  b4Fz for high values of b (around b  2),
corresponding to oblate geometries. Fig. 10 shows s=q ¼ 3=2 resonance around Hz ¼ 3Hr, close to
what we would expect using Eq. (46). Increasing b will lead to a proportional increase of s, the
number of islands, keeping everything else the same.



Fig. 8. Set of nonlinear resonances separated by KAM curves. The number of islands increases closer to the midpoint

of oscillation, rh, where rh  0:7. E ¼ 0:063, P ¼ 0:258, b ¼ 1.
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3.4. Overlapping of resonances and the onset of strong chaos

The width of an island in a nonlinear resonance depends on the strength of the perturbation, �
(see Eq. (14)) and a, the degree of nonlinearity of the unperturbed Hamiltonian H0. The non-
linearity a is defined as [8]
a ¼ J
x

ox
oJ

���� ���� ð49Þ
In terms of the unperturbed frequency x, the width of an island is given by:
maxDx
x

¼ ð�aÞ
1
2 ð50Þ
To understand the destruction of KAM surfaces and the occurrence of strong chaos, we introduce
Chirikov’s parameter Kc:
Kc ¼
DJ
dJ

ð51Þ
where DJ is the maximum width of the island chain (in action variables) and dJ is the distance
between neighboring resonances. When Kc � 1, the island chains are clearly separated by KAM



Fig. 9. Outward shift of the outer 1:1 resonance due to an increase in b in a strongly chaotic regime (compare with Fig.

(7)). E ¼ 0:063, P ¼ 0:23, b ¼ 1:2.
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curves, between which the trajectories are confined. The resonances begin to overlap when Kc > 1,
leading to an onset of strong chaos, characterized by stochastic behavior over much of the phase-
space. Approximating,
Dx ¼ ox
oJ

DJ ð52Þ

dx ¼ ox
oJ

dJ ð53Þ
We can rewrite the criterion for the onset of strong chaos in terms of x:
Kc ¼
Dx
dx

> 1 ð54Þ
To estimate the upper limit on Kc, let us calculate the overlap of the q ¼ 1 resonances. From Eq.
(36) the condition for s-resonance is xz ¼ sxr, where xz and xr are functions of Hz and Hr,
respectively. Rewriting the above equation after substituting for xr from Eq. (44) we get,
xzðHzÞ ¼ s
4

3a
ðFrHrÞ1=4 ð55Þ



Fig. 10. Resonance at higher b. Arrows point to the elliptic centers of the outer 3:2 resonance. E ¼ 0:063, P ¼ 0:23,
b ¼ 2.
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where xzðHzÞ indicates that xz is a function of Hz. Hr and Hz are the energies of the averaged
Hamiltonians along z and r, respectively, at the s-resonance. The s þ 1 resonance then occurs at
Hz þ dHz and Hr þ dHr, where dHr þ dHz ¼ 0 to conserve total energy H .
xzðHz þ dHzÞ ¼ ðs þ 1Þ 4
3a

ðFrHrÞ1=4 1

�
þ dHr

4Hr

�
ð56Þ
where we have used the expansion ðHr þ dHrÞ1=4  H
1=4

r ð1þ dHr=4HrÞ. Expanding Eq. (56), and
dropping the smallest term, we get:
xzðHz þ dHzÞ ¼ s
4

3a
ðFrHrÞ1=4 1

�
þ dHr

4Hr

�
þ 4

3a
ðFrHrÞ1=4 ð57Þ
For s < 10 resonances, sðdHr=4HrÞ � 1. Thus Eq. (57) becomes:
xzðHz þ dHzÞ ¼ s
4

3a
ðFrHrÞ1=4 þ

4

3a
ðFrHrÞ1=4 ð58Þ
Combining Eqs. (58) and (55) and using Eq. (44), we get an expression for dxz
dxz ¼ jxzðHz þ dHzÞ � xzðHzÞj ¼
4

3a
ðFrHrÞ1=4 ¼ xr ð59Þ
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Using Dxz ¼ ð�aÞ1=2xz from Eq. (50), Kc becomes:
Kc ¼
Dxz

dxz
¼ ð�aÞ1=2 xz

xr
ð60Þ
Thus the criterion for the overlapping of q ¼ 1 resonances is:
Kc ¼ ð�aÞ1=2s > 1 ð61Þ
This actually sets the upper limit on Kc, since other resonances will overlap before the overlap of
the q ¼ 1 resonances, resulting in an onset of strong chaos at a lower value of Kc then that given
by Eq. (61). The exact form of the dependence of � and a on P and b is difficult to obtain, since it
would require the expression of the full Hamiltonian given by Eq. (7) in action-angle variables.
However, we can find the qualitative relationship between the two sets of variables and thereby
explain the overlapping of resonances and the onset of strong chaos observed with variation of P
or b. Multiplying out the terms in Eq. (7), we get:
V ¼ 1

2

P 2

r2

�
� Pð1� r2 � b2z2Þ þ r2ð1� r2 � b2z2Þ2

�
ð62Þ
In Dr coordinates (see Eq. (30), where the expansion around r0 leads to the cancellation of
linear terms), the second term in the above equation is quadratic, and the leading contribution
from the first term is also quadratic, and therefore linear in the equations of motion. It follows
that most of the nonlinearities in the Hamiltonian come from the third P -independent term,
which also contains coupling. It can therefore be concluded that decreasing P will increase the
relative contribution from the nonlinear and coupling terms, and therefore increase both the
nonlinearity parameter a and the coupling �. From Eq. (61), an increase in a, � will result in a
greater overlap of resonances and an eventual onset of strong chaos. Fig. 8 shows a set of
resonances well bounded by KAM curves, we therefore expect that Kc � 1 for this set of
parameters. Fig. 7, plotted for a lower value of P , shows an overlap of resonances. Although
some of the island structure is retained and we can still see the location of the different s-res-
onances, the destruction of the bounding KAM curves has occurred, resulting in greater region
of stochasticity, as compared to Fig. 8. Thus Kc > 1 in Fig. 7, showing a transition to strong
chaos.
An increase in b increases the overlap between resonances and therefore chaotic behavior by

increasing � in Eq. (61). This can be seen by looking at Eq. (10), where the coupling term is the last
term in the equation. Since this term is strongly dependent on b, we can expect that an increase in
b will also increase the perturbation coefficient �. The overlap of resonances and the onset of
strong chaos caused by increasing b can be seen in Figs. 7 and 9–11 where the value of b is varied,
while P is kept constant.Thus variation of P or b effects the degree of stochasticity through a and
�, which as shown in Eq. (61), determine the Chirikov parameter Kc.

3.5. Adiabatic limit

Eq. (46) shows a linear dependence of s on b and a much weaker �1=4 power dependence on
Hr. As mentioned before, in the z ¼ 0 subplane, the coordinates separate so that Hr and Hz can be



Fig. 11. Shifting of resonances towards the midpoint and the decrease of chaos with decreasing b. Location of 1:1

resonances shifts closer to the midpoint of oscillation, rh  0:7, as b is lowered. E ¼ 0:063, P ¼ 0:23, b ¼ 1=2.
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replaced by Hr and Hz, respectively (see Eq. (45)), as long as the motion is not too affected by the
resonance. Using Eq. (46), we expect a decrease in b to strongly shift the location of a one-to-one
resonance towards smaller values of Hr or closer to the midpoint of oscillation at r ¼ rh, in the
z ¼ 0 plane. Fig. 11 shows this for b ¼ 1=2. There is only a thin layer of stochasticity close to the
separatrix, due to the very low values of Hr (or amplitude of oscillation A) where the resonance
occurs.
As the value of b is further decreased, the quadratic terms in Eq. (28) can no longer be ne-

glected, leading to behavior different than what would be expected based on previous analysis
(Figs. 12 and 13). To understand the motion at b2 � 1, let us turn to Eqs. (10) and (11). It can be
seen that there is a separation of time scales between r and z motion in the limit of small b. Since
the motion along r is much faster than the motion along z, Jr is a conserved adiabatic invariant,
except during the crossing of the separatrix [17,19,20]. At the approach to the separatrix the
frequency, xr, slows down leading to a breakdown of xr � xz condition required for the adia-
batic invariance of Jr. The change in Jr during each crossing is � b lnðbÞ [21]. This leads to mostly
chaotic orbits inside and close to the separatrix as shown in Fig. 13.
To avoid the crossing of the separatrix that occurs during a transition between cyclotron and

figure-8 orbits, the action Jr has to be high enough so that the ion executes a figure-8 orbit with
xr � xz when it passes z ¼ 0 subplane. To ensure the adiabatic invariance of Jr, we can find a
lower limit on its value by choosing Hrmin ¼ ð1þ dcÞV ðrh; 0Þ, where dc � 1 [22], calculating the



Fig. 12. Chaos at lower values of b where the quartic approximation fails. E ¼ 0:063, P ¼ 0:23, b ¼ 0:3.
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resultant pr as a function of r, and substituting it into the integral in Eq. (15). The condition for
integrable orbits becomes:
Jr >
1

2p

I
ð1

(
þ dcÞV ðrh; 0Þ �

P
r

�
� rð1� r2Þ

�2)1
2

dr ð63Þ
The above integral is the action of the ion in the z ¼ 0 subspace when Hr is just high enough for
the ion to pass over the energy barrier at some finite speed and execute figure-8 orbits. r2h ¼ K1 is
the location of the top of the barrier evaluated at z ¼ 0 (Eq. (26)). The factor of ð1þ dcÞ insures
that the motion is not too close to the phase-space separatrix. Since Jr is conserved for integrable
orbits, Eq. (63) provides a threshold above which orbits are integrable.
Fig. 14 shows the area inside the phase-space separatrix, Jrs, in the z ¼ 0 cross-section as a

function of P . All orbits passing through the z ¼ 0 plane with J < Jrs, will cross the separatrix as
the area inside shrinks with motion towards higher jzj values. This leads to mostly chaotic orbits
inside and close to the separatrix as shown in Fig. 13. The shrinking of the area inside the phase-
space separatrix is due to the drop of the potential barrier along r as the ion moves towards
higher absolute values of z (see Fig. 3). Thus most of the cyclotron orbits in the low b limit should
be stochastic due to a repeated violation of Jr. Above a critical value of P ¼ Pc, all cyclotron
orbits disappear and only betatron orbits exist, we would therefore expect mostly integrable
orbits.



Fig. 13. The adiabatic limit occurring for small b values. Most orbits inside and close to the separatrix are chaotic.

E ¼ 0:063, P ¼ 0:23, b ¼ 0:2.
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P

Fig. 14. The area inside the phase-space separatrix, Jrs, in the z ¼ 0 cross-section as a function of P . Orbits lying below
the curve are chaotic.
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4. Universal resonance and intrinsic degeneracy

At higher values of P , the quadratic terms become more important for ions confined to the
FRC. This can be seen in Fig. 5 where the quadratic coefficient crosses zero below Pc (if the
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amplitude terms are taken into account) and continues to increase as P increases. It follows that at
higher values of P (about P > 6Pc=5 for the energies used), the unperturbed Hamiltonian can be
expressed as uncoupled simple harmonic oscillators. Expanding the Hamiltonian in Eq. (7)
around r0 ¼ K1=2

1 , so that Dr ¼ r � r0, and grouping all nonquadratic terms under the perturba-
tion term, H1, we get
H ¼ 1

2
p2r þ

1

2
p2z þ

1

2
Dr0Dr2 þ 1

2
b2Dz0z2 þ �H1ðDr; zÞ ð64Þ
where Dr0 and b2Dz0 are the coefficients of the quadratic coordinate terms in the expansion of the
Hamiltonian
Dr0 ¼ 1þ 2P � 12K1 þ 15K2
1 þ

3P 2

K2
1

ð65Þ

b2Dz0 ¼ b2ð2P � 2K1 þ 2K2
1 Þ ð66Þ
with K1 is given by Eq. (27).
In action-angle variables the coordinates of a simple harmonic oscillator are given by [7]
Dr ¼ 2Jr

Rr

� �1=2

sin hr ð67Þ

pr ¼ ð2JrRrÞ1=2 cos hr ð68Þ

z ¼ 2Jz

Rz

� �1=2

sin hz ð69Þ

pz ¼ ð2JzRzÞ1=2 cos hz ð70Þ

where Rr ¼ D1=2

r0 and Rz ¼ bD1=2
z0 . Substituting action-angle variables from Eqs. (67)–(70) into the

expanded Hamiltonian in Eq. (64), we get
H ¼ xrJr þ xzJz þ �H1ð~J ;~hÞ ð71Þ

where xr and xz are the frequencies of the unperturbed quadratic Hamiltonian,
xr ¼ D1=2
r0 xz ¼ bD1=2

z0 ð72Þ

In action-angle variables, H1 can be expanded as:
H1 ¼
X1

l;m¼�1
Hl;mð~JÞ expði~n 
~hÞ ð73Þ
In the absence of resonances, Eq. (71) is integrable and the conserved invariants, close to Jr and Jz,
can be found by applying standard perturbation theory and expanding in the same way as for a
one-dimensional system. The terms in H1 can be easily found by expanding the Hamiltonian
around r0, as was done in Eq. (64), and substituting action-angle variables, given by Eqs. (67)–
(70). The exact expression for H1;�1 will be given below, relating to a discussion of a 1:1 universal
resonance.
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A resonance will occur whenever the conditions of Eq. (24) are satisfied, with xr and xz given
by Eq. (72). The width of the island in a resonance for a Hamiltonian given by Eq. (71) should be
large, due to the intrinsic degeneracy, since the unperturbed frequencies, xr and xz, are constant,
thereby leading to a universal resonance. In this case, transforming to a rotating frame:
Jr ¼ sbJ1; Jz ¼ bJ2 � qbJ1; ĥ1 ¼ shr � qhz; ĥ2 ¼ hz ð74Þ
the unperturbed Hamiltonian in Eq. (71) is a function of qJr þ sJz (where xz=xr ¼ s=q) or in
rotating coordinates:
bH0 ¼ bH0ðbJ2Þ ð75Þ

that is, H0 is independent of bJ1.
Following Lichtenberg and Lieberman [7], in the presence of a resonance in an intrinsically

degenerate system (where xr and xz are constant), the perturbation to the Hamiltonian is
DH ¼ 1

2
GðDbJ1Þ2 þ 1

2
F ðDĥ1Þ2 ð76Þ
where the bar above DH signifies that averaging over the fast variable ĥ2 has been performed. G is
a nonlinearity parameter proportional to �
G ¼ �
o2H0;0

obJ 2
10

þ �
o2Hs;�q

obJ 2
10

ð77Þ
F is also proportional to �,
F ¼ �2�Hs;�q ð78Þ

Eq. (76) was obtained by transforming to rotating coordinates

~bJ and
~̂h, where ĥ1 and ĥ2 are the

slow and fast variables, respectively. Then averaging over the fast variable ĥ2, and expanding the
highest order resonant terms around the elliptic point of the resonance at bJ1 ¼ bJ10 and ĥ1 ¼ 0.
Since the nonlinearity parameter G in Eq. (76) is small (of order �), we can expect maximum
excursion in DbJ1 to be large. This explains why intrinsically degenerate systems have large reso-
nances [7].
The equations given above can be used for analytic study of specific resonances that occur at

different values of b. Eqs. (65) and (66) determine the range of values of P and b for which dif-
ferent resonances occur. Fig. 15 shows Dr0 and b2Dz0 for b ¼ 2 plotted as a function of P . It can be
seen that the two coefficients are close for a range of values of P , creating a universal one-to-one
resonance. To estimate DH and DbJ1, (or DJr), for the case of the one-to-one resonance, we express
�H1 in action-angle variables and find G and F ¼ �2�H1;�1, in accordance with Eqs. (77) and (78).
Changing back to ðJr; JzÞ variables, keeping only the terms of lowest power in ~J , a valid
approximation for ions confined inside the FRC, we get
G  1

R2
r

6K1

�
þ 15P 2

2K3
1

�
ð79Þ

F  1

2R2
r

ð6K1 � 1ÞJrJz ð80Þ
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Fig. 15. Quadratic coefficients of H0 as a function of P for the case of a universal 1:1 resonance at b ¼ 2. Below

P ¼ 0:25 fourth power terms dominate.

Fig. 16. Universal 1:1 resonance occurring as a result of intrinsic degeneracy, onset at higher P values. E ¼ 0:063,
P ¼ 0:3, b ¼ 2.

24 A.S. Landsman et al. / Communications in Nonlinear Science and Numerical Simulation xxx (2004) xxx–xxx

ARTICLE IN PRESS
To compare the magnitudes of G and F , keep in mind that K1=2
1 is the midpoint of oscillation in

the z ¼ 0 subplane, so that for the ions oscillating inside the FRC: K1 � 1=2. In dimensionless
variables adopted throughout this paper, the magnetic field separatrix (to be distinguished from
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the phase-space separatrix) at z ¼ 0 is located at r ¼ 1. From Eq. (76) the maximum fluctuation in
energy for a one-to-one resonance is given by,
DH  ðp2=2ÞF ð81Þ

with F given by Eq. (80). The maximum change in Jr for a one-to-one resonance can be estimated
by setting Jr ¼ bJ1 (see Eq. (74)) and using Eq. (76) to obtain:
G
F

� �1=2 DJrmax

p

� �
¼ Oð1Þ ð82Þ
Substituting Eqs. (79) and (80) into Eq. (82), using Jr � Jz, we get,
DJrmax

Jr
� Oð1Þ ð83Þ
indicating that the changes in action in a universal resonance are large. Fig. 16 shows a universal
one-to-one resonance that occurs at b ¼ 2 for a range of values of P . The fluctuations caused by
the resonace are large due to the intrinsic degeneracy of the system in this regime.
5. Conclusion

After reducing the three-dimensional Hamiltonian of an ion inside the FRC to that of a particle
moving in a two-dimensional potential, possible types of ion orbits for positive azimuthal angular
momentum P were derived. Then the effects of variation in P and inverse elongation b were
investigated. A method of averaging was used to study the structure of nonlinear resonances. It
turns out that at intermediate values of P , the fourth order terms in the averaged Hamiltonian
predominate. In this case, the unperturbed frequencies xr and xz can be derived as a function of
the averaged Hamiltonians bHr and bHz, respectively. Based on these frequencies, the occurrence of
various s resonances, where s ¼ xz=xr, can be calculated. It was found that increasing b shifts the
location of the resonance outward towards higher values of bHr. High values of b are found to
produce high s resonances. The structure of the resonances was such that higher s resonances were
found closer to the midpoint of oscillation along r. The dependence of Chirikov’s island overlap
parameter, Kc, on the magnitude of the perturbation � and nonlinearity a was derived and the
qualitative relationship between �; a and b; P discussed. It was found that lowering P or increasing
b cause an increase in � and a, leading to a greater overlap of resonances and the eventual onset of
strong chaos. In the adiabatic regime, occurring for large elongations (small b), orbits outside the
phase-space separatrix, in the z ¼ 0 subplane were shown to be integrable, while the majority of
orbits inside the phase-space separatrix were not. This is due to separation of time scales xr � xz

that occurs for orbits which do not cross the phase-space separatrix.
Next, the universal resonance resulting from intrinsic degeneracy of the Hamiltonian at higher

values of P was investigated. Under these circumstances, the unperturbed frequencies are con-
stant, and the Hamiltonian can be expressed in action-angle variables of a simple harmonic
oscillator. The width of the resonances can then be derived from the perturbation term H1. For
high P case, most of the orbits are integrable, except in case of a resonance when xz=xr ¼ q=s,
where q and s are integers. After deriving an expression for unperturbed frequencies in this
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degenerate regime, a universal one-to-one resonance was found analytically and numerically at
b ¼ 2 for a range of values of P . The width of this resonance was estimated and the fluctuations in
action found to be large (of order one), as would be expected for a degenerate case.
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