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Using laser-induced fluorescence, measurements of parallel ion velocities were made along the axis
of a helicon-generated Ar plasma column whose radius was modified by spatially separated
mechanical and magnetic apertures. Ion acceleration to supersonic speeds was observed 0.1-5 cm
downstream of both aperture types, simultaneously generating two steady-state double layers (DLs)
when both apertures were in place. The DL downstream of the mechanical aperture plate had a
larger potential drop, A¢p=6-9 kT,, compared to the DL downstream of the magnetic aperture,
A¢pr ~3 kT,. In the presheath region upstream of the mechanical aperture, the convective ion
speed increased over a collisional distance; from stagnant at 4 cm from the aperture to the 1.4 times
the sound speed at the aperture. The dependence of the free- and trapped-ion-velocity-distribution
functions on the magnetic-field strength and mechanical-aperture electrical bias are also
presented. © 2005 American Institute of Physics. [DOI: 10.1063/1.2121347]

I. INTRODUCTION

Electrostatic double layers (DLs) in plasmas are isolated
non-quasi-neutral regions remote from material surfaces.'
The measured electric potential drops across the DLs, A¢p,,
range from 3 to 30 kT,/e and the DL length, typically
30-100 Debye lengths, N\p, is much shorter than the
electron-electron or ion-neutral lengths. The resulting strong
electric field in the collisionless plasma creates energetic par-
ticle beams. Usually,2’3 the ion-velocity-distribution function
(IVDF) on the low-potential side of the DL contains the en-
ergetic beam and a low-energy ion population. The low-
energy ion population on the low-potential side of the DL
consists of a single Maxwellian distribution symmetric
around the zero speed and is often called the “trapped” popu-
lation in the literature. Ions, which originate on the high-
potential side of the DL, accelerate through the DL, and form
the energetic beam on the low-potential side, are termed
“free.” (Similar labels are applied to electrons on the high-
potential side.) The formation of DLs in laboratory plasmas
may be promoted by a number of different means. The meth-
ods we employ use mechanical and magnetic apertures, both
individually and in tandem.

A DL is frequently identified by measuring the spatial
change of the plasma potential with Langmuir probes. Ex-
tracting, from probe data, the convective speed of ions or
electrons transiting through or reflected by the DL is a diffi-
cult, and sometimes impossible, task. Retarding-field energy
analyzers (RFEAs) have been used with success to measure
the free- and trapped-electron and ion energy distributions.
Laser-induced fluorescence (LIF) is a nonperturbing method
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to determine the velocity distribution of ions and atoms.
There have been numerous LIF studies of ion flows in heli-
con plasma experiments.‘l_6 The results presented here are
the first LIF measurements in helicon sources to provide de-
tailed IVDFs upstream, in, and downstream of a DL for both
trapped and free ions and with multiple DLs generated by
tandem apertures.

Researchers using helicon plasma sources have reported
the formation of current-free DLs at distances many helicon
wavelengths from the helicon antennas. With Ar helicon
plasmas generated at low pressure, <0.5 mT, Charles and
Boswell” used a RFEA to study a DL with A¢p =3 kT,/e
formed at the junction of their Pyrex helicon source with a
metal expansion vessel. Both the potential profile and the
energy of the ion beam accelerated through the DL were
determined.® In the same source, but for hydrogen plasmas,
Charles’ also observed a supersonic ion beam, 2.1C; (where
Cy=\kT,/M; and is the ion sound speed), and attributed the
beam to the presence of a double layer. Using a tunable
diode-laser-based laser-induced-fluorescence diagnostic,]O
Cohen et al.® reported supersonic velocities of argon ions
which had passed through a mechanical aperture located
1 cm upstream of a region of converging-diverging magnetic
field, termed a magnetic nozzle or a magnetic aperture. Su-
personic flows were only detected under the conditions of
high-helicon axial-power flow (>30 W/cm?) and low-
ambient-gas pressure (<1.5 mT) in the helicon source. In the
center of the helicon source chamber, about 30 cm upstream
of an aperture plate and 30 cm downstream of the helicon
antenna, ions were stagnant, i.e., their flow speed was below
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FIG. 1. (Color online). (a) The schematic of the Magnetic Nozzle eXperiment (MNX). Argon plasma is formed by the absorption of helicon waves launched
from a double-saddle antenna. The plasma flows through the main chamber along the magnetic-field lines created by a set of Helmholtz coils. The plasma then
flows through a metal aperture M2 and the nozzle coil into the expansion region (ER). The beam of a diode laser is directed along the MNX axis, allowing
LIF measurements throughout the MNX. (b) The scanning mechanism for the LIF collection optics allows 12 lines-of-sight (LOS) intercepting axial points
in the ER near the nozzle. (c) The axial field strength near the nozzle at a Helmholtz-coil current of 50 A and a nozzle current of 400 A, typical of

experimental conditions in this paper.

the ion thermal speed. The rapid acceleration of ions as they
passed through the aperture was the evidence that a DL ex-
isted in the nozzle region. Limited optical viewing access did
not permit LIF measurements near the magnetic-nozzle mid-
plane. Also using a LIF system, Sun et al’ reported that
at ~1 m from the antenna in a low-axial-power flow
(~5 W/cm?), large-radius, low-neutral-pressure helicon ar-
gon plasma source, a supersonic ion beam developed where
the plasma exited the source chamber into an expansion
chamber. In addition to the ion beam, a cold, subsonically
drifting background ion population was observed.

Features common to these and several earlier nonhelicon
DL-producing experiments are apertures—mechanical or
magnetic—and low-neutral-gas pressures. In the context of
the physics of double layers, what is an aperture? An aper-
ture (in a plate) is a hole of radius, r,, smaller than the
plasma column radius, Fps which divides the plasma column
into source and expansion regions, see Fig. 1. Mechanical-
aperture plates establish an equipotential boundary in a plane
around the aperture hole and on the surfaces surrounding the
hole. In the experiments described here, the short sheath
thickness, A\, <107 cm, in the source chamber results in a

strong electric field at the aperture plate’s surface,
>10* V/cm. If the sheath thickness were to exceed the ap-
erture diameter, ions would fall through the sheath and pass
through the aperture with the same velocities they would
achieve in the absence of the aperture, i.e., the plasma does
not “see” the aperture.11 Since the presheath has a character-
istic length ~3 cm, which is much larger than the aperture
diameter, a similar effect might be expected for ions passing
through the presheath. In other words, the ions might be
accelerated to the aperture by presheath electric field.

A magnetic aperture is a region of converging/diverging
magnetic field, and was originally called a magnetic Laval
nozzle. Supersonic ion beams, with Mach numbers as large
as 3, were obtained using such nozzles as long ago as 1969."
More recently, a magnetic nozzle has been proposed for the
VASIMR rocket to convert thermal energy into thrust.'>'*
Note that, in the measurements reported here and earlier, the
ion-beam energy decreased with increasing nozzle field
strength. Therefore, the ion acceleration to supersonic speeds
is not simply understood by analogy to the mechanical Laval
nozzle. Efforts must be made to understand the static electric
field, i.e., the DL, which creates the energetic ion beam.
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Even for a purely divergent magnetic-field configuration (no
compression region), Sun et al. observed supersonic ion flow
speed that increased with decreasing magnetic-field strength
in the expansion region.5

Static electric double layers can form in a current-free
plasma expanding in a divergent magnetic field was pre-
dicted in an analytical study by Perkins and Sun in 1981.3
Although they predicted that a stable DL required 7T,<T;,
there is strong experimental evidence that stable DLs can
exist in expanding plasmas with 7,>T; in the absence’ or
presencelf’ of current. More recently, a one-dimensional, hy-
brid simulation (particle ions and fluid electrons) that mod-
eled rapid plasma expansion in a diverging magnetic field
with an axial-position-dependent electron-loss rate in a uni-
form magnetic field showed that the rapid decrease in plasma
density, such as due to a diverging magnetic field, is consis-
tent with the double-layer formation in a current-free
plasma.'” In that simulation, a thin (~7\p) 14 eV DL
formed at the location of rapid plasma expansion for up-
stream parameters of 0.5 mTorr, 7,=6.5X 10% cm™, and T,
=7.2 eV. Throughout the simulation volume, a low-energy
population of ions, corresponding to ions created by ioniza-
tion and by charge-exchange collisions, was observed.
Downstream of the DL, a high-energy ion population, corre-
sponding to ions accelerated through the DL potential drop,
was observed in addition to the low-energy background
population. The total ion acceleration, i.e., presheath and DL,
occurred over roughly an ion mean free path and the
presheath thickness, or length, was much longer than the
length of the DL.

A recent experiment by Plihon ef al. confirmed DL for-
mation in an axially uniform plasma with a uniform mag-
netic field and a strong axial density gradient.18 By puffing
SF¢ gas into the plasma at a single axial location, the highly
electronegative SFq gas created a strong electron-density gra-
dient along the plasma axis by substantially reducing the
electron density—thereby simulating rapid plasma expansion
without a divergent magnetic field.

To the best of our knowledge, no computational study of
the effects of overall magnetic-field strength on the DLs is
available in the literature. As will be shown by these experi-
ments, there is a clear correlation among the strength of the
magnetic field, the magnitude of the potential drop across the
DL, and the floating potential of an aperture placed in the
plasma. The large floating potentials of the aperture are sug-
gestive of the presence of energetic electrons in the helicon
plasma. Though suprathermal electrons are expected in heli-
con plasma devices, because of the high plasma densities of
helicon plasmas, experimental verification of their existence
and properties is a hotly debated issue in the helicon com-
munity. Since a small population, ~10%, of energetic elec-
trons in a cooler background plasma has been shown to in-
duce the formation of a freestanding current-free double
layer,19 the DL measurements presented in this work may
also shed light on the question of energetic electrons in heli-
con plasmas. Other experiments demonstrated that smaller
energetic populations, as low as 1% of the bulk, are sufficient
to sustain a DL and that the DL strength increased with the
number of energetic electrons.”
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There are also other questions concerning the role of an
aperture in a plasma. For example, will the presheath electric
field be affected if an aperture is created in an absorbing
wall? That the length of presheath should be roughly equal to
the ion-neutral collision length is well known and was em-
ployed in Riemann’s model of plasma sheaths,”' which was
verified experimentally by Oksuz and Hershkowitz on a sur-
face immersed in a low-density, low-temperature, weakly
collisional, argon plasma.22 They found that the potential
drop across the presheath is A¢,~kT,/e, instead of kT,/2e
as is common at a boundary between the sheath and
presheath. The experimental data that will be presented in
this work confirm that the potential drop is ~k7,/e in front
of an aperture in a metal plate. The role of a small superther-
mal electron population in determining A, as well as Ap,
cannot be discounted.”> We also have installed two apertures,
separated by up to 10°\p, to explore whether the strongly
modified (upstream) IVDF and electron energy distribution
function (EEDF) will promote formation of a second DL at
the second aperture.

With a tunable diode-laser-based LIF diagnostic, we
have mapped the argon IVDF on the high- and low-potential
sides of a DL localized beyond an aperture in a metal plate
located many wavelengths from the helicon source. The
strength and spatial extent of the DL were determined from
the measurements of the spatial dependence of the free-ion
energy downstream of the DL. The effect of the location of
the aperture plate—relative to the magnetic-field coils—on
the DL was investigated by repositioning the aperture plate
to the following locations: (1) the center of the main cham-
ber, (2) the magnetic-nozzle region at the end of the main
chamber, and (3) the expansion region downstream of the
magnetic-nozzle coil. Without any aperture plate, the IVDF
measurements show that a 20 V potential drop develops over
a distance of 3 cm, ~500,\,, beyond the 2-cm-i.d. magnetic
nozzle at the end of the main chamber. (The nozzle coil acts
as both a mechanical and a magnetic aperture.) With a
mechanical-aperture plate also placed in the plasma, an ad-
ditional DL forms. Short regions, ~0.5 cm, of free-ion de-
celeration in the DL and also backflowing (reflected or
trapped) cold ions have been observed, suggesting that the
DL is of the ion-acoustic type. Ion acceleration in the
presheath was also measured by LIF.

Il. EXPERIMENTAL APPARATUS

The experiments were performed in the Magnetic
Nozzle Experiment (MNX) Facility (see Fig. 1). A
4-cm-diam, steady-state helicon plasma flows along the mag-
netic field formed by a Helmholtz-coil pair. The plasma exits
the source (or main) chamber through a coaxial 2-cm-i.d.,
3-cm-long nozzle coil used to control the magnetic-field gra-
dient. The nozzle coil extends from z=-1.5cmtoz
=1.5 cm. Figure 1(b) shows the axial field strength near the
nozzle at a Helmholtz-coil current of 50 A and nozzle cur-
rent of 400 A, typical of experimental conditions in this pa-
per. Exiting the nozzle coil, the plasma enters a 10-cm-i.d.,
100-cm-long Pyrex tube termed the expansion region (ER).
The ER has 15 internal 4-cm-i.d. coaxial copper rings, of
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which eight may be electrically biased. The floating poten-
tials of the copper rings in the ER were typically —40 to
—120 V. Such large floating potentials suggest the presence
of energetic electrons in the ER. Floating potentials in the
main chamber are much lower, ~-30 V, indicating that an
energetic electron population, if present, has a population
less than (m,/M ,)"”>~1/300 smaller than that of the bulk

electrons.**% Briefly, the floating potential in a two-electron-
temperature plasma only moves away from the value that
would exist with only the primary (cold) component present,
when the ion flow to objects in the plasma is balanced by the
hot-electron component alone.

Also shown in Fig. 1(a) are three electrically biasable
metal disks, labeled end plate, M2, and M3. For the experi-
ments reported here, the end plate and M3 were electrically
floating. The disk M2, i.e., the aperture plate, has a hole, the
aperture, which limits the plasma and neutral-gas flows and
helicon-wave propagation into the ER. Figure 2 shows the
five locations where M2 may be positioned. Also, M2 may
be completely removed, as shown in Fig. 2(a). (The aperture
diameters and plate thicknesses are indicated on the figure.)
Sheaths of differing thickness will form on the opposite sides
of the aperture plate, predominantly because of the different
plasma densities on the two sides of the plate. Based on
Langmuir probe measurements at the center of the main
chamber and in the expansion chamber 10 cm from the ap-
erture, the ratio of the Debye lengths in the ER to that in the
source chamber (gghp/ \p) is ~10 with A, ~6X 107 cm.
The control of pumping speed in the ER allows the ratio of
ion-neutral collision lengths to be varied, 0.1 <pg\,,/\;,
<10, with 1< \; <10 cm.

For LIF measurements, the laser is directed down the
axis of the plasma column, through the entire ER and main
chamber into the helicon antenna region and onto the end
plate. Before entering the MNX vacuum chamber, the laser is
sent through a quarter-wave plate, allowing creation of either
right or left circularly polarized light for exciting either the
o— or o+ transitions in Ar'*. The shift in the center wave-
length of the measured LIF signal is used to determine the
average flow of the ions along the laser path. A detailed
description of the LIF measurement principles can be found
in Ref. 11.

lll. EXPERIMENTAL RESULTS AND DISCUSSION
A. The magnetic nozzle as an aperture

Without an aperture plate, Fig. 2(a), the plasma flows
into the expansion region from the main chamber through the
2-cm-i.d. magnetic-nozzle coil. The midplane of the nozzle
coil is defined as z=0 cm. Figure 3 shows the flow speed at
z=3.0cm in the ER versus the nozzle magnetic-field
strength for a rf power of 800 W, magnetic field (By) of
580 G at the center of the source chamber, and neutral pres-
sures of 0.7 and 0.2 mTorr in the source (P,,) chamber and
ER (Pgg), respectively. The energy of the exiting ion beam
decreases with increasing nozzle field strength until the
(added) nozzle field strength reaches 2000 G. (At
B,=2000 G, the ratio, R, between the on-axis magnetic field
at the nozzle midplane to that in the center of the ER was
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FIG. 2. Five different configurations were used: (a) The experiments with-
out an aperture plate and the measurement were performed in the ER. (b) A
metal disk with an aperture of 0.48 cm and thickness of 0.305 cm was
placed immediately before the nozzle. The measurements were performed in
both the ER and source (measurements performed with the 0.8 cm aperture
are not presented here). (c) The aperture used in (b) was moved 1.9 cm into
source (data for this configuration are not reported in this paper). (d) The
aperture used in (b) was moved 27.6 cm into the source and measurements
were performed near the aperture plate and in the ER. (¢) A metal disk with
an aperture of 0.48 cm and thickness of 0.165 cm was placed in the ER. The
measurements were performed near the aperture plate.

R=4.775. At R=4, a 4-cm-diam plasma column will pass
through the nozzle without contacting the nozzle coil hous-
ing.) The ion-beam energy at z=3.0 cm is approximately
7 eV for By=2000 G. The corresponding Mach number
(VIC,) was ~1.3. For nozzle magnetic-field strengths below
1000 G, the LIF signal was too weak to give a good measure
of ion speed.
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FIG. 3. The beam energy vs the nozzle field strength at z=3.0 cm for rf
power of 800 W, By,=580G, P,=0.7 mTorr, Pgr=0.2 mTorr, and no
aperture plate (M2).

Our earlier published data at higher By fields of 1200 G
and with a mechanical aperture located in front of the
magnetic-nozzle coil, as in Fig. 2(b), Ref. 6, showed quali-
tatively similar behavior, i.e., a 5% decrease in ion energy,
E;, with increasing B,,, for 0<B,<<2000 G, but E; rising 3%
for 2000 G<B, <3000 G. Those earlier results showed
considerably higher flow energies (E;~ 18 eV) and speeds,
M~1.7 at z=2 cm. At these lower By values, R<4 at
B,=2000 G, the effect of the nozzle magnetic field is quali-
tatively similar to that of a purely magnetic aperture.

B. Mechanical aperture plate

By placing the aperture plate (AP) at four different po-
sitions relative to the midplane of the magnetic-nozzle coil,
we investigated the effect of aperture-plate location on the
parallel ion flow speed. A 0.1 eV argon ion would have a
gyroradius of 0.1-1 cm (5000-500 G), comparable to the
radii of the various apertures used, 0.25—-0.4 cm. The transit
time for ions, accelerated by the presheath to 5 eV, to pass
through the thin aperture plate is 2-20 times shorter than the
ion gyroperiod. Independent of the aperture-plate installa-
tion, the ion flow speed (energy) in the center of the main
chamber is very small, less than 0.03 eV. The perpendicular
ion temperature is slightly higher, ~0.05-0.5 eV. Thus, ions
pass through the aperture on nearly straight lines, within 30°
of the plate normal.

1. Aperture plate immediately upstream of nozzle coil

With the AP positioned, as shown in Fig. 2(b), just
upstream of the AP, at z=-2.3 cm, the ion flow energy
increases to 1.1 eV (Fig. 4). After the AP and nozzle region,
the ion flow energy increases further to 13.0eV at
z=24 cm. By z=7.4 cm, the ion-beam energy is up to
17.7 eV. Coexistent with the ion beam is a low-energy popu-
lation in the ER. Throughout this paper we use the terminol-
ogy introduced in Ref. 6: high-energy particles are called
HEPs, and low-energy particles are called LEPs. The LEPs,
represented by the diamond symbols in Fig. 4, have zero net
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FIG. 4. The beam energy vs z for AP at z=—1.8 cm and plasma conditions
of rf power P=600-900 W, B;=580 G, By=2250 G, P,;=0.6 mTorr, and
Prr=0.3-0.7 mTorr. The open diamonds label the ions created locally in
the EP (the LEP). The open circles label the ions in and emanating from the
source (which become HEP ions in the ER).

flow throughout the expansion region. The lack of LEP net
flow persists even in the DL where the HEP ions accelerate
from 7800 m/s(12.7 eV) to 9200 m/s(17.6 eV) in 4.6 cm.
These observations are consistent with the LIF-measured
IVDFs in other helicon DL experiments.26

Although the LEP ion peak was generally stagnant
(as shown later in Fig. 7) or had slightly positive speeds
(as shown in Fig. 4), significant LEP ion flows in the —z
direction were observed with higher rf power (950 W) and
lower neutral pressure (0.4 mTorr), as shown in Fig. 5. Lo-
cations distant from the nozzle, e.g., at z=8.7 cm, showed a
single Maxwellian with no axial flow. Locations closer to the
nozzle showed an increasing flow back towards the nozzle,
which suggests that a modest negative potential dip occurs
downstream of the DL. The depth of the potential dip is at
least 0.2 V, or about a hundredth of the DL potential drop.
Thus the potential does not decrease monotonically as there
is a slight increase in the potential on the downstream side of
the DL. Such potential structures are characteristic of DLs
that evolve from ion-acoustic solitons."*’

LIF Amplitude (arb.)

0

Speed (m/s)

FIG. 5. Example of the reversed flow of LEP ion population at various axial
positions. The negative speeds indicate the ions moving upstream towards
the source.
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Figure 6 shows the ion-beam energy measured at
z=3.2 cm and the current collected by the aperture plate ver-
sus a bias voltage applied to the AP. The minimum ion-beam
energy occurs at a bias voltage of 9.1 V (close to the mea-
sured plasma potential of 9.8+ 1.0 V). When the AP is biased
more negative than the plasma potential, the ion-beam en-
ergy increases until the bias voltage equals the floating po-
tential. Further decreases in the applied bias potential lower
the ion-beam energy slightly. At the negative potentials,
—-30 to —70 V, the AP only collects ion saturation current as
the electron current is negligible. A bias voltage above the
plasma potential, from 10 to 30 V, also increases the ion-
beam energy. Electron saturation current to the AP is not
achievable with the current and voltage capabilities of the AP
biasing power supply and instability of the plasma column. It
is important to note that the DL may no longer be a current-
free DL when the AP is biased.

For an expanding, two-electron-temperature plasma
terminated with a metal plate at one end, Hairapetian and
Stenzel reported that the DL amplitude decreased as an in-
creasing positive bias voltage was applied to the end
plate.zo’28 They reported that the DL disappeared at large
positive bias voltage and that negative bias voltages had no
effect on their DL. Consistent with their results, a large nega-
tive bias voltage had little effect on the ion-beam energy in
these experiments. However, the detailed LIF measurements
indicate that the ion-beam energy does decrease slightly with
negative bias until the AP enters ion saturation—suggesting a
slight weakening of the DL until the maximum ion current is
pulled through the sheath onto the AP. Similarly, and consis-
tent with the Hairapetian and Stenzel observations, the ion-
beam energy also decreases with increasing positive AP bias
voltage until the bias voltage equals to 9.1 V or close to the
plasma potential (9.8 V). We hypothesize that increasing the
electron current into the DL (through the positive bias volt-
age) increases the ratio of thermal to energetic electron
densities—thereby decreasing the strength of the DL.2*% In
contrast to the Hairapetian and Stenzel results, at large posi-
tive bias voltages (when the AP enters into electron satura-
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FIG. 7. AP at z=-29.4 cm and plasma conditions of P=800 W, B
=580 G, By=1100 G, P;,;=0.51 mTorr, and Pgg=0.11 mTorr. For measure-
ments in the main chamber, the nozzle magnetic-field strength was de-
creased to 200 G. The open diamonds, open circles, and solid circles denote
the parallel kinetic energy of LEP, HEP, and SHEP. The (super-high-energy-
population) (SHEP) label identifies the ions in the nozzle region that are
stationary in source and believed to have passed through two DLs.

tion, or for bias voltages larger than the plasma potential) the
ion-beam energy returns to the same level as when the AP
was biased at a negative potential.

2. Aperture plate near center of the source chamber

With the AP inserted into the plasma near the nozzle
coil, the parallel ion kinetic energy at z=3.0 cm increased
from 9 eV (Fig. 3) to 14 eV (Fig. 4). To better understand
the effect of the AP, we separated the AP (mechanical aper-
ture) and nozzle (magnetic aperture) by positioning the AP
near the center of the source (main) chamber, between —29.1
and —29.4 cm, see Fig. 2(d). The viewing geometry in this
configuration allowed spatially resolved measurement of par-
allel ion flow speeds around both the mechanical and mag-
netic apertures. As shown in Fig. 7, ions begin to accelerate
at z=—31.4 cm and enter the aperture hole with an energy of
7.2 €V at z=-29.4 ¢cm (Fig. 7). The ions keep accelerating as
they transit the aperture and reach 20.4 eV at z=-28.9 cm
(Fig. 7). Further downstream of the AP, at z=-28.1 cm, the
ions reached 39.5 eV ~7kT,. Thus, the ions accelerated from
7.2t039.5 eV in 1.2 cm, ~2000,\;, or ~200gg\ .

In the expansion region beyond the nozzle coil
(z>1 cm), three ion populations are observed, see Fig. 7.
The LEP ions with parallel kinetic energy ~0.1 eV are pro-
duced locally in the expansion region. We suggest that the
ions with kinetic energy ~16.3 eV at z=4.4 cm (~7 eV at
z=3 cm, as shown in Fig. 7) were created in the region be-
tween the AP and the nozzle coil and then accelerated
through a DL at the nozzle, gaining ~16 eV in transit. A
third, super-high-energy, population (SHEP) is observed
downstream of the nozzle (z=2.9 cm) having a flow energy
of 51 eV. The 51 eV energy is consistent with the observa-
tion of a roughly 40 eV energy increase at the AP followed
by a 7-10 eV increase at the magnetic nozzle at z=2.9 cm.
In other words, this configuration of a mechanical AP fol-
lowed by a magnetic nozzle leads to the formation of two
distinct double layers.

Since a DL is essentially a plasma sheath that forms in
the interior of a plasma, a presheath must arise to match the
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circles), 800 W (solid squares), and 1100 W (solid diamonds). B;=580 G
and P,,=0.5 mTorr. Aperture plate at z=—29.4 cm (right surface).

plasma potential to that of the DL.” To satisfy the Bohm
criterion for ions falling into the sheath at the edge of the
DL, the ions must reach a minimum parallel energy of %kTe
by passing through the presheath. The measured ion accel-
eration before the DL is shown in Fig. 8 for the AP placed at
z=-29.4 cm. The ions begin to accelerate ~3 cm before the
plate, approximately equal to the expected length of the
presheath, the ion-neutral collision lezngth.ZI’22 The beam en-
ergies at the aperture are 6.7, 7.2, and 8.3 eV for 500, 800,
and 1100 W of rf power. Langmuir probe measurements at
z~-32+0.15 cm indicate that the electron temperatures are
8.0+£1.0, 8.4+1.0, and 8.4+1.0 eV. Langmuir probe charac-
teristics show an energetic electron population, if at all
present, had a density less that 0.1% of the bulk electrons.
Thus, the ion energies at the aperture indicate a k7,/e poten-
tial drop in transiting the presheath. The presheath region, as
indicated in Fig. 8, is 4—5 cm, which, as noted before, is
approximately equal to the ion-neutral mean free path of
3-5 cm. Thus, the thickness of the presheath is consistent
with Riemann’s sheath model. However, similar to Oksuz
and Hershkowitz’s experiment,22 the potential drop over the
presheath is ~kT,/e, instead of kT,/2e in Riemann’s model.
The exiting ion flow energies at z=-27.6 cm, about 1.5 cm
from the exit of aperture, are 36.5, 39.6, and 47.8 eV for
these three rf power scans, i.e., the strength of the sheath DL
increases with increasing rf power.

Note that although the plasma parameters upstream of
the nozzle are dramatically different in Figs. 4 and 7, the
strength of the DLs formed by the nozzle magnetic field are
nearly identical, about 20 V or ~3kT,/e. Although no spatial
scan was performed for the configuration without an aperture
plate, the increase in ion kinetic energy close to the magnetic
aperture is approximately the same, 7.0 eV, at z=3.0 cm
with By=2250 G, for configurations 2(a) and 2(d). Thus,
these measurements suggest that the nozzle magnetic field
creates an overall 20 V potential drop along the axis even
though the detailed DL structure does depend on the up-
stream plasma parameters (as indicated by Figs. 4 and 7).
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3. Aperture plate in the expansion chamber

The floating potential acquired by an electrically floating
AP placed in the expansion region of the experiment is in-
dicative of a density-weighted average energy of the electron
population in the plasma. Shown in Fig. 9 are the measure-
ments of the z-directed ion energy at z=5.3 cm for the AP at
z=4.5 cm [the AP position as indicated by Fig. 2(e)] and the
aperture-plate floating potential versus nozzle magnetic-field
strength. Both the ion flow energy and the floating potential
of the AP increase with decreasing nozzle magnetic-field
strength. The large negative floating potential, up to =75 V,
of the electrically isolated aperture plate in the expansion
chamber suggests the existence of energetic electrons in the
plasma. The existence of energetic electrons in helicon
sources, possibly resulting from Landau damping of the heli-
con wave, has long been debated amongst the helicon source
community.30 Reports of energetic electrons in long, low-
axial-power density, higher-neutral-pressure helicon plasmas
indicated that the energetic population was less than ~107*
of the bulk, thus the Landau damping explanation for the
high ionization efficiency of helicon sources has fallen into
disfavor.""¥ However, the LIF measurements presented
here, for a relatively short, higher power-density device, in-
dicate a strong correlation between the mechanism respon-
sible for determining the strength of the DL and the floating
potential of the AP—possibly a result of the DL formation
being controlled by a population of energetic electrons in the
helicon source.

If the high (negative) floating potential of the AP results
from an energetic electron population, the same population
of energetic electrons should determine the strength of the
ion-accelerating DL and both the AP floating potential and
the ion-beam energy will have similar dependencies on the
source parameters.20 Note also that if the higher nozzle field
strength results in more energetic electrons reflected back
into the source because of magnetic mirroring, i.e., fewer
energetic electrons can reach the AP downstream of nozzle,
the decrease in the strength of the DL and the decrease in the
AP floating potential with increasing nozzle magnetic field
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strength are easily explained. From a Laval-nozzle model, it
is expected that an increasing magnetic-nozzle field strength
should lead to higher-energy ion beams. In contrast, our re-
sults show that a weaker nozzle magnetic field does a poorer
job of confining the energetic source electrons and is more
effective at ion-beam acceleration. These results also imply
that the energetic electrons have a significant perpendicular
energy.

IV. SUMMARY

Detailed measurements were made of the velocity distri-
bution of free and trapped ions in the vicinity of single and
multiple double-layer structures. Near and in the DL the
trapped-ion velocity distribution is well represented by a
single, nearly stationary Maxwellian velocity distribution.
The measured free-ion speeds reveal that the DL formed by
the nozzle is about 3 k7T,/e, independent of the upstream
IVDF and EEDF. Acceleration of ions up to—and
exceeding—the ion sound speed (determined by the bulk
electron temperature) is observed in the presheath upstream
of the DL. The potential drop over the presheath is ~k7,/e.

Two-step double-layer structures were produced by first
creating a DL at an electrically floating plate placed in the
plasma-source chamber. Then, the plasma downstream of the
first DL flowed through a second DL created by a rapid
plasma expansion in the divergent magnetic field of a
magnetic-nozzle coil. That a mechanical aperture can create
a DL with strength ~6 kT,/e and thereby increase the exit
velocity of ions flowing through an additional DL further
downstream suggest that a sequence of appropriately sized
apertures could be used to modify the specific impulse of
plasma thrusters or other systems used to create ion beams.

Perhaps the most significant result from this work is that
for expanding helicon source plasmas the ion beams created
by the DL in a magnetic aperture appear to depend on the
energetic electron population that can escape the source re-
gion. Therefore, as seen in other experiments, configurations
with no nozzle magnetic field and very weak fields in the
expansion region yield the highest-energy ion beams. Recent
investigations by comparing different spectroscopic line
ratios also suggest the existence of a small population
(~0.1%) of suprathermal electrons (~10 kTe).33

Further studies are still needed to explore the relation-
ship among the DL strength and aperture size, the depen-
dence of the threshold pressure for DL formation on gas

Phys. Plasmas 12, 103509 (2005)

species and neutral-gas temperature, and the effects of mul-
tiple gas species on the strength of the DL.
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